simulation numérique directe des écoulements à phases dispersées.

Soutenue le 29 Mars 2012

Après avis de :

Jean-Luc Estivalezes Ingénieur de recherche, ONERA Toulouse Rapporteur
Dominique Legendre Professeur, IMFT Rapporteur

Devant la commission d’examen composée de :

Jean-Luc Estivalezes Ingénieur de recherche, ONERA Toulouse Rapporteur
Dominique Legendre Professeur, IMFT Rapporteur
Stéphane Vincent Maître de conférences, Université Bordeaux I Examinateur
Anthony Wachs Ingénieur de recherche, IFPEN Examinateur
Jean-Paul Caltagirone Professeur, Université Bordeaux I Directeur de thèse
Guillaume Vinay Ingénieur de recherche, IFPEN Promoteur de thèse
Table des matières

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remerciements</td>
<td>vii</td>
</tr>
<tr>
<td>Introduction générale</td>
<td>1</td>
</tr>
<tr>
<td>1 Etat de l’Art : Differentes approches pour la modélisation d’un écoulement diphasique à phase dispersée</td>
<td>7</td>
</tr>
<tr>
<td>1.1 Modèles macroscopiques</td>
<td>8</td>
</tr>
<tr>
<td>1.1.1 Modèle à deux fluides</td>
<td>8</td>
</tr>
<tr>
<td>1.1.2 Modèle de mélange</td>
<td>10</td>
</tr>
<tr>
<td>1.2 Modèles microscopiques</td>
<td>12</td>
</tr>
<tr>
<td>1.2.1 Méthodes Lagrangiennes</td>
<td>13</td>
</tr>
<tr>
<td>1.2.1.1 Marker-And-Cell (MAC) method</td>
<td>13</td>
</tr>
<tr>
<td>1.2.1.2 Front tracking method</td>
<td>14</td>
</tr>
<tr>
<td>1.2.2 Méthodes Eulériennes</td>
<td>14</td>
</tr>
<tr>
<td>1.2.2.1 Volume of Fluid (VOF) method</td>
<td>15</td>
</tr>
<tr>
<td>1.2.2.2 Level-Set method</td>
<td>16</td>
</tr>
<tr>
<td>1.2.2.3 Accurante conservative Level-Set (ACLS) method</td>
<td>17</td>
</tr>
<tr>
<td>1.2.2.4 Coupled Level-Set and Volume of Fluid (CLSVOF) method</td>
<td>18</td>
</tr>
<tr>
<td>1.2.3 Méthodes mixtes</td>
<td>19</td>
</tr>
<tr>
<td>1.2.3.1 Volume-of-Fluid Sub-Mesh (VOF-SM) method</td>
<td>20</td>
</tr>
<tr>
<td>1.2.3.2 Hybrid particle Level-Set method</td>
<td>20</td>
</tr>
<tr>
<td>1.3 Bilan</td>
<td>21</td>
</tr>
<tr>
<td>2 La méthode Level-Set</td>
<td>25</td>
</tr>
<tr>
<td>2.1 Motivation</td>
<td>25</td>
</tr>
<tr>
<td>2.2 La fonction Level-Set</td>
<td>26</td>
</tr>
</tbody>
</table>
TABLE DES MATIÈRES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.1</td>
<td>Équation de transport</td>
<td>27</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Propriétés</td>
<td>27</td>
</tr>
<tr>
<td>2.3</td>
<td>Résolution numérique de l’équation de transport</td>
<td>29</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Maillage et discrétisation</td>
<td>29</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Discrétisation temporelle</td>
<td>31</td>
</tr>
<tr>
<td>2.3.2.1</td>
<td>Schéma d’Euler explicite</td>
<td>32</td>
</tr>
<tr>
<td>2.3.2.2</td>
<td>Schéma Runge-Kutta</td>
<td>32</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Discrétisation spatiale</td>
<td>33</td>
</tr>
<tr>
<td>2.3.3.1</td>
<td>Schéma TVD Lax-Wendroff Superbee</td>
<td>33</td>
</tr>
<tr>
<td>2.3.3.2</td>
<td>Schéma WENO5</td>
<td>34</td>
</tr>
<tr>
<td>2.4</td>
<td>Algorithme de réinitialisation</td>
<td>36</td>
</tr>
<tr>
<td>2.4.1</td>
<td>Problématique</td>
<td>36</td>
</tr>
<tr>
<td>2.4.2</td>
<td>Équation de réinitialisation</td>
<td>37</td>
</tr>
<tr>
<td>2.4.3</td>
<td>Résolution numérique</td>
<td>39</td>
</tr>
<tr>
<td>2.4.4</td>
<td>Conclusion sur l’algorithme de réinitialisation</td>
<td>42</td>
</tr>
<tr>
<td>2.5</td>
<td>Exemples de suivi d’interface</td>
<td>43</td>
</tr>
<tr>
<td>2.5.1</td>
<td>Interface elliptique perturbée</td>
<td>43</td>
</tr>
<tr>
<td>2.5.2</td>
<td>Serpentin</td>
<td>45</td>
</tr>
<tr>
<td>2.5.2.1</td>
<td>Influence du schéma de discrétisation en temps</td>
<td>47</td>
</tr>
<tr>
<td>2.5.2.2</td>
<td>Influence du schéma de discrétisation en espace</td>
<td>49</td>
</tr>
<tr>
<td>2.5.2.3</td>
<td>Influence de l’algorithme de réinitialisation sur le cas-test du serpentin</td>
<td>52</td>
</tr>
<tr>
<td>2.6</td>
<td>Conclusion sur la méthode de suivi d’interface</td>
<td>56</td>
</tr>
<tr>
<td>3</td>
<td>Formulation et résolution numérique des équations de Navier-Stokes</td>
<td>61</td>
</tr>
<tr>
<td>3.1</td>
<td>Présentation du modèle d’un écoulement diphasique à phase dispersée</td>
<td>62</td>
</tr>
<tr>
<td>3.1.1</td>
<td>Modèle d’écoulement diphasique</td>
<td>62</td>
</tr>
<tr>
<td>3.1.2</td>
<td>Conditions de saut à l’interface</td>
<td>64</td>
</tr>
<tr>
<td>3.2</td>
<td>Traitement des conditions de saut</td>
<td>66</td>
</tr>
<tr>
<td>3.2.1</td>
<td>Méthode CSF (Continuum Surface Force)</td>
<td>66</td>
</tr>
<tr>
<td>3.2.2</td>
<td>Méthode Ghost Fluid</td>
<td>68</td>
</tr>
<tr>
<td>3.3</td>
<td>Résolution numérique des équations de Navier-Stokes</td>
<td>69</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Algorithme de décomposition d’opérateurs</td>
<td>70</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Résolution du sous-problème d’advection-diﬀusion</td>
<td>71</td>
</tr>
<tr>
<td>3.3.3</td>
<td>Résolution du sous-problème de Stokes</td>
<td>72</td>
</tr>
<tr>
<td>3.3.3.1</td>
<td>Algorithme d’Uzawa préconditionné</td>
<td>72</td>
</tr>
<tr>
<td>3.3.3.2</td>
<td>Algorithme du "Laplacien de pression"</td>
<td>73</td>
</tr>
<tr>
<td>3.4</td>
<td>Maillage et discrétisation</td>
<td>75</td>
</tr>
</tbody>
</table>
TABLE DES MATIÈRES

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.4.1</td>
<td>Discrétisation en temps</td>
<td>75</td>
</tr>
<tr>
<td>3.4.2</td>
<td>Discrétisation en espace</td>
<td>77</td>
</tr>
<tr>
<td>3.4.2.1</td>
<td>Discrétisation du terme convectif</td>
<td>77</td>
</tr>
<tr>
<td>3.4.2.2</td>
<td>Discrétisation du terme visqueux</td>
<td>79</td>
</tr>
<tr>
<td>3.4.2.3</td>
<td>Discrétisation du terme de tension de surface</td>
<td>82</td>
</tr>
<tr>
<td>3.4.2.3.1</td>
<td>Calcul des propriétés géométriques de l’interface</td>
<td>83</td>
</tr>
<tr>
<td>3.4.3</td>
<td>Condition de stabilité numérique</td>
<td>87</td>
</tr>
<tr>
<td>3.5</td>
<td>Outil numérique</td>
<td>88</td>
</tr>
<tr>
<td>3.6</td>
<td>Tests de validation d’un écoulement diphasique</td>
<td>90</td>
</tr>
<tr>
<td>3.6.1</td>
<td>Goutte statique (test de Laplace)</td>
<td>90</td>
</tr>
<tr>
<td>3.6.2</td>
<td>Écoulement de Poiseuille diphasique</td>
<td>94</td>
</tr>
<tr>
<td>3.6.3</td>
<td>Bulle ascendante</td>
<td>97</td>
</tr>
<tr>
<td>3.6.3.1</td>
<td>Paramètres initiaux</td>
<td>98</td>
</tr>
<tr>
<td>3.6.3.2</td>
<td>Test 1 : $Re = 35$ et $Bo = 10$</td>
<td>101</td>
</tr>
<tr>
<td>3.6.3.3</td>
<td>Test 2 : $Re = 35$ et $Bo = 125$</td>
<td>107</td>
</tr>
<tr>
<td>3.6.3.4</td>
<td>Conclusion</td>
<td>112</td>
</tr>
<tr>
<td>4.1</td>
<td>Inversion de phase</td>
<td>116</td>
</tr>
<tr>
<td>4.2</td>
<td>« Bottle Test »</td>
<td>121</td>
</tr>
</tbody>
</table>

Conclusion et Perspectives

127

BIBLIOGRAPHIE

131

Annexe A : Communications issues des congrèses

139
Remerciements

Ce travail n’aurait jamais vu le jour sans l’appui d’un certain nombre de personnes que j’aimerais remercier ici.

Je tiens en tout premier lieu à remercier mes encadrants de thèse Jean-Paul Caltagirone et Guillaume Vinay. Mon directeur de thèse, Jean-Paul Caltagirone, a su me faire partager sa riche expérience et me guider tout en me faisant confiance pendant ces trois années, malgré la distance Paris-Bordeaux qui nous séparait. Je remercie particulièrement mon promoteur de thèse, Guillaume Vinay, pour m’avoir encadrée au jour le jour durant ces trois années, pour ses conseils avisés, pour son aide, pour sa disponibilité quotidienne et pour le réconfort apporté dans les moments difficiles.

Je suis extrêmement reconnaissante envers l’ensemble des membres du jury, Jean-Luc Estivalezes et Dominique Legendre, Rapporteurs, Stéphane Vincent et Anthony Wachs, Examinateurs. J’éprouve un profond respect pour leurs travaux et leur parcours et je suis fier d’avoir pu partager avec eux mon travail.

J’exprime ma sincère reconnaissance à Éric Heintze pour m’avoir accueillie chaleureusement dans sa direction Mécanique Appliquée. Je remercie également Véronique Henriot pour son accueil au sein de son équipe de travail, pour ses encouragements ainsi que pour le soutien qu’elle m’a toujours apporté durant ces années de thèse.

Je tiens également à témoigner toute ma reconnaissance à l’ensemble de la direction Mécanique Appliquée dans laquelle les conditions de travail furent particulièrement agréables aussi bien en termes professionnels qu’en termes humains. Un grand merci donc à Anthony, Gilles, Habiba, Christiane, Éric F., Florence, Philippe, Jean-Christophe, Martin, Sandrine, Nadège, Éléonore, Laurent et Christelle.

Comment finir sans parler de tous ceux avec qui les journées paraissaient bien trop courtes surtout grâce à nos pauses café "interminables" ? Mes remerciements les plus sincères s’adressent à Kad (mon camarade de bureau, qui a su me supporter
pendant deux ans et enrichir chaque jour nos conversations d’un nouveau cliché), Christina (avec qui nous avons essayé de débattre de certains des nombreux clichés grecs et russes), Greg (mon très précieux professeur de français, grâce auquel j’ai appris de nombreuses expressions que je ne peux malheureusement pas rapporter dans ce manuscrit), Florian (l’homme dont les cheveux disent "bonjour" au soleil), David (qui m’a enseigné la diplomatie française), Walid (mon camarade jobsstevien, qui m’a également appris à aimer ou presque le "vrai" café) et François-Pierre (qui était toujours là pour vérifier si j’avais bien changé de chaussettes). Ce manuscrit n’aurait jamais vu le jour sans leur soutien quotidien et leurs conseils "professionnels" avisés.

J’ai également bien plus qu’une pensée pour mes parents, mon frère et Paul-Louis ...
Introduction générale

Problématique

La plus grande partie des écoulements qui nous entourent sont des écoulements complexes multiphasiques. Dans ce travail, nous tenterons de décrire un écoulement multiphasique composé de deux fluides non miscibles séparés par une interface.

L’étude, la description et la compréhension physique de ce type d’écoulement forment un sujet de recherche fondamental en mécanique des fluides, dont les applications industrielles sont très nombreuses.

L’industrie pétrolière notamment porte un intérêt particulier à ce genre d’écoulement. Le fluide issu du puits pétrolier est en effet composé d’eau, d’huile et de gaz. Il contient parfois également du sable. Les technologies actuelles permettent de transporter ce mélange à partir des réserves naturelles jusqu’aux installations de traitement. Mais pour éviter certaines difficultés qui peuvent se produire au cours de ce transport (apparition d’hydrates, formation de paraﬃnes, etc.) et mieux contrôler le processus, une solution consiste à séparer les diﬀérentes phases de l’effluent, pour ensuite les transporter séparément.

Un des moyens pour séparer les diﬀérents composants d’un fluide issu du puits pétrolier est l’utilisation d’un séparateur gravitaire, schématisé sur la Fig. 1. Le séparateur représente une chambre dans laquelle des conditions d’écoulement suﬃsamment calmes sont établies pour que les gouttelettes d’une phase dispersée - l’eau - sédimentent en traversant la phase d’huile par diﬀérence de densité entre les deux fluides.

Dans la majorité des cas, les dimensions d’un séparateur gravitaire sont calculées à partir de lois physiques simples de la mécanique des fluides, elles-mêmes basées sur les principes de sédimentation de sphères rigides dans un liquide (par exemple la loi de Stokes) :
Introduction générale

Fig. 1 – Schéma d’un séparateur gravitaire

\[V_s = \frac{2r^2 g (\rho_p - \rho_f)}{9\mu_f} \]

(0.0.1)

où \(g \) est la gravité, \(r \) le diamètre des sphères, \(\mu_f \) la viscosité dynamique du fluide,
\((\rho_p - \rho_f) \) l’écart de la masse volumique entre la particule et le fluide.

Grâce à des essais expérimentaux, ces lois physiques peuvent être enrichies en prenant en compte les effets de coalescence et de rupture et permettent de dimensionner convenablement un séparateur a priori.

Cependant, ces lois ne sont plus suffisantes si l’on souhaite optimiser l’architecture et la géométrie interne du séparateur. Il faut alors se tourner vers des calculs numériques afin de prendre en compte la complexité de l’écoulement polyphasique dans le séparateur [85]. C’est pourquoi il nous semble essentiel de décrire précisément la zone appelée zone d’émulsion dense. Elle représente l’écoulement d’une phase continue dans laquelle de nombreuses inclusions dispersées interagissent (Fig. 2). C’est dans cette zone que les principaux mécanismes physiques qui gouvernent les phénomènes de séparation, comme la coalescence ou la rupture entre les gouttes, se produisent.

Pour pouvoir modéliser le processus de séparation huile/eau de la zone d’émulsion dense, nous avons considéré les conditions spécifiques qui font abstraction des problèmes d’entrée, où s’effectue la séparation du gaz, et de sortie, où se trouve le déversoir. Nous considérons qu’un tel modèle nous permettrait d’évaluer l’influence de cette zone sur l’hydrodynamique de l’écoulement.

Ainsi le but principal de ce travail est de développer un code de simulation numérique directe capable de modéliser un écoulement diphasique liquide/liquide, afin d’étudier en détails les effets de coalescence et de rupture entre les gouttes.
Le travail sur la modélisation nécessite l’utilisation d’une technique de suivi d’interface appropriée et le développement d’un solveur des équations de Navier-Stokes incompressible pour calculer le champ de vitesse, ainsi qu’une méthode de couplage entre ces deux solveurs pour la simulation des écoulements diphasiques.

Toutefois, dans l’optique de mise en œuvre de cet outil pour la modélisation d’un écoulement diphasique, où plusieurs fluides se rencontrent dans une zone d’émulsion dense, une puissance de calcul importante est requise. C’est la raison pour laquelle, nous avons choisi de développer notre outil de modélisation sous la plateforme PELICANS

PELICANS est une plateforme logicielle développée par l’IRSN (Institut de Radioprotection et de Sûreté Nucléaire). Elle permet le développement d’outils de simulation complexes et puissants grâce à une parallélisation des calculs efficace.

Phénomènes multi-échelle

L’étude des écoulements multiphasiques rencontrés dans l’industrie pétrolière met en jeu des phénomènes physiques à des échelles très différentes (Fig. 3).

La prise en compte de tous les phénomènes physiques rencontrés dans les simulations numériques demanderait d’utiliser des modèles extrêmement détaillés, entraînant des coûts de calcul élevés. La simulation multi-échelle est une réponse à cette problématique. Elle consiste à simuler chaque phénomène à l’échelle la plus pertinente, c’est-à-dire en utilisant plusieurs modèles de taille et de finesse différentes. Cela permet, grâce à des solveurs adaptés, de réaliser des simulations qui seraient inaccessibles par des approches plus directes.

Les simulations numériques des écoulements multiphasiques effectuées à l’échelle « macroscopique » (Fig. 3) ne permettent pas de prendre en compte explicitement les

1. PELICANS https://gforge.irsn.fr/gf/project/pelicans/
Introduction générale

Fig. 3 – Présentation d’une structure multi-échelle dans l’industrie pétrolière.

phénomènes qui se produisent à l’échelle « microscopique » ou moléculaire, comme par exemple ceux liés à la description précise de l’interface ou encore à la physico-chimie des fluides. De plus en pratique, la prise en compte de tels phénomènes dans les modèles macroscopiques nécessite l’utilisation de maillages extrêmement fins ce qui est souvent inadapté compte tenu de la durée de temps de calcul requise. La solution à ce problème est souvent trouvée grâce à la décomposition d’une structure complexe en cascade de modèles construits sur des échelles différentes.

La méthodologie multi-échelle repose sur le principe de simuler chaque phénomène à l’échelle la plus pertinente. Pour cela il est premièrement nécessaire de distinguer les différentes échelles de la modélisation et ensuite de modéliser les relations existant entre ces différentes échelles.

Dans le cadre de ce travail de thèse nous nous sommes concentrés sur le modèle microscopique qui ne tenant pas compte des phénomènes macroscopiques, est apte à fournir un modèle d’écoulement multiphasique assez détaillé tout en conservant temps de calcul raisonnables.

Nous verrons que notre outil de simulation numérique directe des écoulements à phases dispersées s’intègre bien dans la perspective d’une simulation multi-échelle.

En effet, la méthode de description fine de l’interface, si elle ne permet pas de simuler un séparateur en entier, pourrait fournir des lois de fermeture d’interaction entre les phases utilisées dans des approches macroscopiques.

Par ailleurs, notre étude portant sur les effets de coalescence et de rupture entre les gouttes, les simulations pourraient intégrer les phénomènes physiques décrits à l’échelle moléculaire. Dans cette hypothèse, la force de tension de surface ne serait plus considérée comme constante car les forces physico-chimiques entreraient en jeu.

Finalement, ce travail de thèse s’intègre dans un plan de recherche à IFP Énergies Nouvelles plus large visant à faire communiquer différents échelles pour être capable de simuler des écoulements complexes à phase dispersée.
Plan du manuscrit

La première partie de ce mémoire est consacrée à la description des différentes approches pour la modélisation d’un écoulement diphasique à phase dispersée. L’étude du processus de séparation nous amène à la nécessité de description fine et précise de l’interface pour pouvoir évaluer l’influence des propriétés physiques sur l’hydrodynamique de l’écoulement diphasique. Ainsi les modèles microscopiques de l’approche locale sont préférés afin d’atteindre nos objectifs.

Dans le chapitre 2 de ce manuscrit, nous exposons en détail la méthode Level-Set qui s’avère être bien appropriée pour suivre une interface mobile dans un écoulement diphasique. Grâce à cette méthode les phénomènes de coalescence et de rupture entre des gouttes sont pris en compte par la gestion naturelle des changements de topologie. Les aspects numériques de résolution de l’équation de transport ainsi que de l’équation d’Hamilton-Jacobi (algorithme de réinitialisation) associés à la méthode Level-Set sont également présentés dans cette partie du manuscrit. Les nombreux essais de validation présentés à la fin de ce chapitre nous permettent de voir les avantages, inconvénients et limitations de cette méthode.

Le chapitre 3 est dédié à la présentation du modèle adopté pour la simulation d’écoulements diphasiques et à l’intégration de l’algorithme de résolution des équations de Navier-Stokes. Dans ce chapitre nous présentons les différentes techniques pour le traitement des conditions de saut à l’interface. Les performances de notre outil numérique de simulation d’un écoulement diphasique sont confirmées par des tests de validation académiques.

Dans le dernier chapitre de ce manuscrit, nous nous concentrons sur des cas d’applications avec des simulations présentants des étapes successives de formation et de décantation d’une émulsion dense caractéristique du processus de séparation.

Nous terminons notre mémoire avec les conclusions et les perspectives à envisager, pour la suite de nos travaux.
Chapitre 1

Etat de l’Art : Differentes approches pour la modélisation d’un écoulement diphasique à phase dispersée

Sommaire

1.1 Modèles macroscopiques .. 8
 1.1.1 Modèle à deux fluides ... 8
 1.1.2 Modèle de mélange .. 10
1.2 Modèles microscopiques ... 12
 1.2.1 Méthodes Lagrangiennes .. 13
 1.2.2 Méthodes Eulériennes .. 14
 1.2.3 Méthodes mixtes ... 19
1.3 Bilan ... 21

Les critères pour le choix d’une approche de la modélisation d’un écoulement diphasique à phase dispersée s’appuient essentiellement sur la précision des résultats attendus ainsi que sur les phénomènes physiques que l’on souhaite étudier. Un paramètre important dans ce choix, est le traitement de l’interface et donc dans ce cas une attention particulière doit être portée à la description des petites structures formées dans un écoulement diphasique.

De manière générale, les écoulements diphasiques peuvent être modélisés à l’aide de deux types d’approches, dépendant du niveau de raffinement pour la description de l’interface entre les deux phases :

– l’approche globale ou modèle macroscopique, qui réunit toutes les méthodes basées sur la mécanique des milieux continus et qui ne permet pas d’identifier
explicitement l’interface séparant les deux phases.

– l’approche locale ou modèle microscopique, dont l’objectif est de décrire précisément l’interface entre les deux phases à l’échelle microscopique.

Dans la suite, nous détaillerons plus précisément différents modèles correspondant à ces deux approches. Néanmoins, comme décrit dans l’introduction, c’est l’approche locale qui correspond le mieux à notre problématique, car nous souhaitons avoir une description précise du comportement de l’interface.

Dans toutes les méthodes décrites ci-dessous le mouvement du fluide est représenté de façon Eulérienne.

1.1 Modèles macroscopiques

Les modèles macroscopiques regroupent les méthodes basées sur la mécanique des milieux continus. Ils sont destinés à l’étude des propriétés physiques de la matière à des échelles de longueurs et de temps très grandes par rapport aux échelles atomiques et moléculaires. À ces échelles et dans les conditions qui intéressent la mécanique des milieux continus, les phénomènes locaux d’interactions entre les deux phases qui apparaissent sont modélisés par des lois macroscopiques empiriques ou semi-analytiques.

Parmi les différents modèles macroscopiques, une distinction peut être faite en fonction de la manière dont est traité le couplage entre les phases. Nous présentons ici ceux qui nous paraissaient les plus utilisés :

– Le modèle à deux fluides dans lequel les deux phases sont décrites séparément.

– Le modèle de mélange dans lequel un seul fluide représente le mélange diphasique.

1.1.1 Modèle à deux fluides

Le modèle à deux fluides est une approche principalement utilisée pour la modélisation des écoulements "à bulles". Il consiste à résoudre les équations moyennées de conservation de la masse et de quantité de mouvement (et si nécessaire de l’énergie) pour chacune des phases. Nous rappelons ici brièvement les équations du modèle à deux fluides, présenté de manière détaillée par Ishii [37].

\[
\begin{align*}
\frac{\partial}{\partial t}(\alpha_k \rho_k) + \nabla \cdot (\alpha_k \rho_k \mathbf{u}_k) &= \Gamma_k \\
\frac{\partial}{\partial t}(\alpha_k \rho_k \mathbf{u}_k) + \nabla \cdot (\alpha_k \rho_k \mathbf{u}_k \mathbf{u}_k) &= -\alpha_k \nabla p + \nabla \cdot \mathbf{\tau}_k + \alpha_k \rho_k \mathbf{g} + \mathbf{M}_k
\end{align*}
\]

(1.1.1)
1.1 Modèles macroscopiques

où \(N \) est le nombre de phases, \(\alpha_k \) la fraction volumique de la phase \(k \) dans le volume total, \(p \) la pression, \(\rho_k \) la masse volumique, \(u_k \) la vitesse de la phase \(k \) et \(\tau_k \) le tenseur des contraintes visqueuses de la phase \(k \). Les termes \(\Gamma_k \) et \(M_k \) sont les termes d’échanges interfaciaux de masse et de quantité de mouvement respectivement.

Pour le modèle à deux fluides, la difficulté principale réside dans la modélisation des termes d’échanges interfaciaux. Il est alors important de détailler le terme \(M_k \) puisqu’il correspond aux forces qui agissent sur l’interface. Il peut être décomposé comme la somme de plusieurs forces.

De façon générale, les actions exercées par la phase continue sur la phase dispersée sont la résultante de deux forces : \(F_D \) dirigée selon la vitesse relative \(u_R = u_d - u_c \), appelée force de trainée, et \(F_L \) normale à la direction de \(u_R \) qu’on appelle force de portance (les indices \(D \) et \(L \) viennent des termes anglais \(drag \) et \(lift \) - respectivement \(trainée \) et \(portance \)) [51]. La vitesse relative désigne la différence entre la vitesse de la phase dispersée \(u_d \) et la vitesse de la phase continue \(u_c \).

Dans la suite nous utiliserons le terme « inclusion » pour définir un élément de la phase dispersée qui peut être solide, liquide ou gazeux.

La force de trainée \(F_D \) joue un rôle important sur le mouvement des inclusions de la phase dispersée (particules, gouttes, bulles) dans un fluide puisque c’est grâce à elle que ces inclusions peuvent être entraînées par un écoulement. On définit la force de trainée par l’expression (1.1.2) :

\[
F_D = -\frac{3}{8} \alpha_d \rho_c C_D \left| u_d - u_c \right| \times (u_d - u_c)
\]

(1.1.2)

où \(R_d \) est une dimension caractéristique de l’inclusion (le rayon dans le cas d’une sphère) et \(C_D \) le coefficient de trainée qui dépend du nombre de Reynolds de la phase dispersée :

\[
\Re_d = \frac{\rho_c R_d |u_d - u_c|}{\mu_c}
\]

(1.1.3)

où \(\mu_c \) est la viscosité dynamique de la phase continue.

La force de portance \(F_L \) est une force transversale qui peut être induite par la rotation des inclusions, le cisaillement de l’écoulement ou par la présence d’une paroi solide. Nous donnons ici la relation pour la force de portance \(F_L \) dans le cas d’une sphère placée en rotation dans un fluide au repos.

\[
F_L = C_L \alpha_d \rho_c (u_d - u_c) \times (\nabla \times u_c)
\]

(1.1.4)

où \(C_L \) est le coefficient de portance.

La définition des termes d’échanges interfaciaux que nous avons donnée par les
expressions (1.1.2) et (1.1.4) n’est valable que pour le cas des inclusions sphériques. Bien que les formes des inclusions de la phase dispersée soient extrêmement variables dans les cas réels, c’est une simplification pratiquement indispensable pour la modélisation des écoulements de telle complexité. Pour avoir plus de détails sur les particules solides non sphériques, ainsi que pour les gouttelettes et les bulles, le lecteur pourra se reporter à [51].

Le modèle à deux fluides est plus complet que le modèle de mélange présenté dans la suite de ce manuscrit car il permet de prendre en compte le glissement entre les phases de façon explicite. De plus, chaque phase est décrite par sa propre équation d’état reliant pression et masse volumique :

\[f(p, \rho_k) = 0 \] (1.1.5)

Le modèle à deux fluides est par exemple bien adapté pour la modélisation des écoulements polyphasiques en régime stratifié.

L’inconvénient de ce modèle est le nombre important d’équations à résoudre et donc des calculs coûteux si nous sommes en présence de nombreuses phases. Cependant, nous nous intéressons ici aux écoulements diphasiques. Seuls deux jeux d’équations de conservation de la masse et de la quantité de mouvement doivent donc être résolus. Cet inconvénient ne serait pas notable dans notre cas.

La difficulté principale du modèle à deux fluides réside dans la modélisation des termes d’échanges interfaciaux. Nous avons déjà noté qu’une approximation importante est faite sur la taille et la forme des gouttes de la phase dispersée (elles sont sphériques et de rayon constant). D’autre part, la résolution numérique de ce type de modèle semble plus délicate dans les zones où \(\alpha_k \) tend vers 0 [49].

1.1.2 Modèle de mélange

La résolution des écoulements diphasiques incompressibles non miscibles à l’aide d’un modèle de mélange consiste à ne considérer qu’un seul fluide, mélange des deux phases. Un unique système d’équations est donc nécessaire :

\[
\begin{align*}
\frac{\partial}{\partial t}(\rho_m) + \nabla \cdot (\rho_m u_m) &= 0 \\
\frac{\partial}{\partial t}(\rho_m u_m) + \nabla \cdot (\rho_m u_m u_m) &= -\nabla p + \nabla \cdot \tau_m + \rho_m g + M_m + \nabla \cdot \tau_{Dm}
\end{align*}
\] (1.1.6)

où \(\tau_m = \sum_k \alpha_k \tau_k \) représente le tenseur des contraintes visqueuses pour le mélange diphasique.
1.1 Modèles macroscopiques

La masse volumique de mélange \(\rho_m \) est définie comme une moyenne locale de la masse volumique des deux fluides pondérée par la fraction volumique :

\[
\rho_m = \sum_k \alpha_k \rho_k
\]
(1.1.7)

La vitesse est définie grâce à l’expression (1.1.8) :

\[
u_m = \frac{1}{\rho_m} \sum_k \alpha_k \rho_k \nu_k
\]
(1.1.8)

Les termes \(M_k \) que nous avons vus pendant la description du modèle à deux fluides, liés aux frottements des phases "se remplacent" par les nouveaux termes \(M_m \) et \(\tau_{Dm} \). Le terme \(M_m \) représentant les forces à l’interface, est défini comme la somme des forces dues à la tension de surface :

\[
M_m = \sigma \nabla \cdot \left(\frac{\nabla \alpha_k}{\| \nabla \alpha_k \|} \right) \nabla \alpha_k = \sigma \kappa(\alpha_k) \nabla \alpha_k
\]
(1.1.9)

où \(\kappa(\alpha_k) \) est la courbure de l’interface et \(\sigma \) le coefficient de tension de surface.

Le tenseur des contraintes de diffusion \(\tau_{Dm} \) représente le glissement entre les phases et est défini par l’équation (1.1.10) :

\[
\tau_{Dm} = - \sum_k \alpha_k \rho_k (\nu_k - \nu_m)^2
\]
(1.1.10)

L’avantage principal de ce modèle est le nombre réduit d’équations à résoudre, puisqu’il s’agit de la somme des équations instantanées (conservation de la masse, quantité de mouvement), établies pour chacun des fluides. Cependant, une équation d’état particulière doit être utilisée lorsque le mélange est diphasique. Elle décrit l’évolution de la pression (localement la même dans chaque phase au sein d’une même maille de calcul) en fonction de la masse volumique du mélange :

\[
f(p, \rho_m) = 0
\]
(1.1.11)

La principale difficulté pour ces modèles est de faire correspondre cette équation d’état, ainsi que les propriétés physiques du mélange, au phénomène physique étudié. Une synthèse des différentes équations d’état est présentée par Dumont dans [21]. Ainsi, il est important de noter qu’en résolvrant un système d’équations pour le mélange, les grandeurs physiques de chacune des phases ne sont pas déterminées.
1.2 Modèles microscopiques

L’objectif principal de l’approche locale ou modèle microscopique est de décrire précisément l’interface entre les deux phases. Il s’agit d’un type de modèle de simulation numérique directe pour traiter les écoulements diphasiques qui permet de prendre en compte la physique à l’échelle de l’interface. La qualité de la simulation des écoulements diphasiques dépendra de la capacité de la méthode choisie à décrire le comportement de l’interface le plus finement possible.

Les techniques de calcul d’interface peuvent être très différentes selon le problème à résoudre. On distingue ainsi deux grandes classes de méthodes pour la description spatio-temporelle des interfaces:

- Les méthodes Lagrangiennes (méthodes de suivi d’interface).
- Les méthodes Eulériennes (méthodes de capture d’interface).

Dans la représentation Lagrangienne, on envisage la dynamique de particules sans masse et on restitue les trajectoires des particules (des marqueurs) en fonction de l’espace et du temps [10]. Des marqueurs transportés par le champ de vitesse locale, servent à localiser l’interface. Soit ils indiquent la présence ou l’absence d’un fluide (Marqueurs de volume - Marker And Cell method [30]), soit ces marqueurs ne sont définis que sur l’interface (Marqueurs de front [19], [81]).

Dans la représentation Eulérienne on envisage les variations dans le temps des caractéristiques de l’interface en des points fixes de l’espace [10]. Les méthodes Eulériennes sont caractérisées par l’utilisation d’un maillage fixe et l’interface est repérée grâce à la quantité scalaire qui est transportée par le champ de vitesse local.

Plusieurs méthodes Eulériennes existent et se diffèrent par le choix de la quantité scalaire et la façon de reconstruire l’interface (Méthode VOF (Volume-Of-Fluid) [29], [34], [43], [83] ; Méthode Level-Set [54], [55], [74]).

Même si les méthodes Lagrangiennes possèdent souvent une précision supérieure aux méthodes Eulériennes elles souffrent de plusieurs inconvénients. Par exemple, les marqueurs doivent être régulièrement redistribués dans le domaine de calcul pour éviter qu’ils s’accumulent dans certaines zones ou que la distance qui les sépare soit trop grande. De plus, les changements topologiques ne s’effectuent pas naturellement. Pour les rendre possibles, un critère arbitraire doit être imposé pour définir l’instant de la jonction ou de la séparation des interfaces. C’est certainement là le principal inconvénient de ces méthodes [77]. Tous ces points limitent l’application des méthodes Lagrangiennes pour notre étude.

1. La classification des méthodes ci-dessous a été effectuée en tenant compte du fait que le mouvement du fluide est représenté de façon Eulérienne (la grille de calcul est fixe).
1.2 Modèles microscopiques

La représentation Eulérienne est la plus commode en mécanique des fluides et elle est utilisée pour un grand nombre d’applications. Après une brève présentation des méthodes Lagrangiennes nous nous concentrerons sur les méthodes Eulériennes.

1.2.1 Méthodes Lagrangiennes

Comme nous l’avons déjà mentionné auparavant les méthodes Lagrangiennes sont basées sur l’utilisation de marqueurs. Pour ce type de méthodes, l’interface peut-être repérée soit par des marqueurs qui indiquent la présence ou l’absence d’un fluide (volume tracking methods), soit par des marqueurs qui ne sont définis que sur l’interface et que l’on suit dans leur mouvement (front tracking methods).

1.2.1.1 Marker-And-Cell (MAC) method

Le principe de cette méthode est le suivant : des marqueurs (ou des particules sans masse) sont placés dans l’écoulement pour repérer le mouvement de chacune des phases. D’après cette méthode les marqueurs sont positionnés dans tout le volume de l’une des phases que l’on souhaite suivre (Fig. 1.1).

![Diagram of the MAC method](image)

Fig. 1.1 – Schéma de la méthode MAC.

La méthode MAC fut pionnière dans le domaine de suivi d’interface, mais elle n’a pas été largement utilisée à cause de nombreuses difficultés. L’efficacité de la méthode peut être augmentée en mettant au départ plus de marqueurs dans les régions voisines des interfaces. Mais les interfaces sont malheureusement affectées par une diffusion numérique. De plus, le coût en mémoire et en temps de calcul que requièrent les très nombreux marqueurs limite ses applications.
1.2.1.2 Front tracking method

En s’inspirant de la méthode MAC [18], Daly a proposé une nouvelle méthode de suivi d’interface [19] en 1968. Avec cette méthode les marqueurs sont distribués non pas dans le fluide mais sur l’interface elle-même. Les marqueurs sont connectés entre eux par des lois linéaires ou polynomiales et ils forment des chaînes ouvertes ou fermées (Fig. 1.2).

Le principal avantage de cette méthode est que la position de l’interface est connue instantanément et avec précision puisqu’elle est décrite à une échelle inférieure à celle de la maille associée aux grandeurs hydrodynamiques.

Cependant, la méthode est sensible à l’écart que l’on a entre deux marqueurs. En effet, lorsque les particules sont trop espacées, le transport de l’interface manque de précision. De plus, cet écart n’est pas conservé au cours du calcul. Il est alors nécessaire d’ajouter ou d’enlever dynamiquement des particules durant la simulation.

Pour le calcul de la courbure de l’interface, il est nécessaire que les particules soient bien réparties. Des difficultés apparaissent également avec la gestion des changements de topologie de l’interface, car il faut continuellement renumérotter et repousser les marqueurs.

Enfin, la prise en compte des conditions aux limites est également difficile, en particulier si l’interface rencontre un bord du domaine.

1.2.2 Méthodes Eulériennes

Pour les méthodes Eulériennes les équations d’évolution du fluide, ainsi que celles des interfaces, sont résolues sur un maillage fixe. Pour ce type de méthodes, l’interface est repérée grâce à la quantité scalaire transportée par le champ de vitesse local.
1.2.2.1 Volume of Fluid (VOF) method

La méthode VOF a été introduite par Hirt et Nichols [34] en 1981. C’est la première méthode de suivi d’interface utilisant le concept de transport d’un champ scalaire qui ait été développée. Cette méthode, spécialement conçue pour la simulation d’écoulements diphasiques, est basée sur le principe de conservation de la masse.

La fonction couleur

L’idée principale de la méthode VOF est d’utiliser un champ scalaire pour repérer les deux fluides. Ce champ scalaire s’appelle la fonction couleur C. Sa valeur varie entre 0 et 1. Cette fonction représente le volume occupé par le fluide dans une cellule de calcul. Ainsi, une maille pleine d’un fluide a la valeur 1 et une maille pleine de l’autre fluide la valeur 0. Si la valeur de la fraction volumique est comprise entre ces deux valeurs, cela indique la présence de l’interface.

La fonction couleur C est advectée par le champ de vitesse local et est la solution de l’équation (1.2.12):

$$\frac{\partial C}{\partial t} + u \cdot \nabla C = 0$$ \hspace{1cm} (1.2.12)

Après advection de la fonction couleur C, il faut reconstruire l’interface dans les mailles où C est compris entre 0 et 1. Des méthodes de reconstruction ont été développées pour améliorer la description et la localisation de l’interface.

Une illustration de la méthode VOF et de deux principaux algorithmes de reconstruction est donnée sur la Fig. 1.3.

![Fig. 1.3 – Principe de la méthode VOF ; (à gauche) Interface réelle et fonction couleur associée ; (au milieu) Classe de méthodes SLIC pour reconstruire l’interface ; (à droite) Classe de méthodes PLIC pour reconstruire l’interface.](image)
Les algorithmes de reconstruction

La méthode VOF SLIC (*Simple Line Interface Calculation*) de Noh et Woodward [50] fait partie des premières méthodes VOF développées. Dans cette méthode, l'interface est représentée dans chaque cellule du maillage à l'aide de segments de droite alignés avec l'une des directions du maillage. Cette représentation de l'interface dépend du sens de déplacement qui peut être suivant l'axe horizontal ou suivant l'axe vertical (Fig. 1.3 (au milieu)). La méthode SLIC est malheureusement insuffisante dans la pratique. Il est préférable de représenter l'interface par un segment de droite non nécessairement parallèle au maillage, comme sur la Fig. 1.3 (à droite), en utilisant la méthode VOF PLIC (*Piecewise Linear Interface Calculation*). Ces méthodes sont basées sur le calcul de la normale à l'interface, qui permet de définir la pente de ces droites [56], [64].

Conclusion

En résumé, la méthode VOF permet de gérer naturellement les changements de topologie de l'interface, les ruptures et connexions. Elle est conservative en masse.

Cependant, ses mauvaises propriétés algébriques rendent difficiles le calcul des grandeurs qui caractérisent l'interface (normale, courbure, tangente). De plus, même si les algorithmes de reconstruction sont efficaces pour améliorer la précision, ils sont complexes et coûteux à mettre en place en 3D. Finalement, la qualité de cette méthode dépendra à la fois de la méthode de reconstruction de l'interface et du schéma numérique pour la résolution de l'équation d'advection.

1.2.2.2 Level-Set method

La méthode Level-Set a été introduite par Osher et Sethian [55] en 1988. Son principe est de définir une fonction scalaire régulière à travers l'interface (fonction distance), dont la courbe de niveau zéro est l'interface que l'on cherche à décrire. La résolution de l'équation de transport, appliquée à cette fonction distance, permet de prédire les mouvements de l'interface dans un champ de vitesse donné. La méthode Level-Set prend en compte les changements topologiques naturellement. Elle permet également de calculer facilement les caractéristiques géométriques à partir de la fonction distance.

Cependant, un certain nombre de défauts peut avoir une influence sur les performances de la méthode. Par exemple, les erreurs numériques dissipatives dans la résolution de l'équation de transport entraînent des pertes de masse. D'autre part, la présence d'un champ de vitesse cisaillé peut fortement écarter ou resserrer les
1.2 Modèles microscopiques

lignes de niveau, avec pour conséquence que le calcul des caractéristiques géométriques devienne de plus en plus imprécis. Il est alors nécessaire d’implémenter un algorithme de réinitialisation afin de corriger la position des lignes de niveau par rapport à la ligne de niveau zéro. Nous exposons la méthode Level-Set en détail dans le chapitre 2 de ce manuscrit.

1.2.2.3 Accurante conservative Level-Set (ACLS) method

La méthode Level-Set conservative (ACLS) a été proposée par Olsson et Kreiss dans [52] et [53] comme une modification simple de la méthode Level-Set ordinaire, en ayant pour objectif de réduire les erreurs de conservation de la masse tout en gardant la simplicité de la méthode originale. La modification principale consiste à remplacer la fonction distance de la méthode Level-Set classique par une fonction tangente hyperbolique qui est transportée et réinitialisée en utilisant des équations conservatives. Les auteurs Olsson et Kreiss [52] ont montré que les erreurs de conservation de la masse pouvaient être réduites en comparant leurs résultats avec ceux obtenus avec une fonction distance classique. Dans [53], les auteurs ont amélioré leur équation de réinitialisation.

La technique classique de la méthode Level-Set est basée sur la représentation de l’interface en tant que courbe de niveau zéro d’une fonction lisse \(\phi \), c’est-à-dire :

\[
|\phi(x, t)| = |x - x_\Gamma|
\]

où \(x_\Gamma \) correspond au point de l’interface le plus proche du point \(x \). Avec cette définition de la fonction distance, l’interface est décrite par le lieu des points \(x \) tels que \(\phi(x, t) = 0 \). Par ailleurs, \(\phi(x, t) > 0 \) d’un côté de l’interface et \(\phi(x, t) < 0 \) de l’autre côté.

La fonction tangente hyperbolique de la méthode Level-Set conservative est définie par Olsson et Kreiss [52], [53] à partir de la fonction distance \(\phi(x, t) \) :

\[
\psi(x, t) = \frac{1}{2} \left(\tanh \left(\frac{\phi(x, t)}{2\varepsilon} \right) + 1 \right)
\]

où \(\varepsilon \) est un paramètre qui correspond à l’épaisseur de l’interface. Pour transporter et réinitialiser la fonction \(\psi \) convenablement, Olsson et Kreiss proposent de prendre \(\varepsilon = \Delta x/2 \).

Au lieu de définir la position de l’interface par iso-surface \(\phi(x, t) = 0 \), elle est désormais définie par la position d’iso-surface \(\psi(x, t) = 0.5 \). Le transport de cette interface peut toujours être défini par la résolution de l’équation de transport, mais appliquée cette fois à la fonction tangente hyperbolique \(\psi \), c’est-à-dire :

\[\frac{\partial \psi}{\partial t} + \nabla \cdot (\mathbf{u} \psi) = 0 \]

(1.2.15)

De même que dans le cas du transport de la fonction distance de la méthode Level-Set classique, rien n’assure que le problème formulé pour le transport de la fonction tangente hyperbolique (1.2.15) préservera la position des lignes de niveau par rapport à l’interface \(\psi \). En conséquence, il est nécessaire d’utiliser un algorithme de réinitialisation afin de corriger la position des lignes de niveau par rapport à l’interface.

La logique de l’algorithme de réinitialisation pour la fonction tangente hyperbolique reste la même que pour la fonction distance classique. En revanche, pour assurer la conservation de la masse, l’équation de réinitialisation change de forme. Elle est présentée dans [20] et [53] ainsi :

\[\frac{\partial \psi}{\partial \tau} + \nabla \cdot (\psi(1 - \psi)\mathbf{n}) = \nabla \cdot (\varepsilon(\nabla \psi \cdot \mathbf{n})\mathbf{n}) \]

(1.2.16)

L’équation (1.2.16) doit être résolue de façon itérative à la fin de chaque pas de temps physique \(\Delta t \). Elle est exprimée en fonction du temps fictif \(\tau \) nécessaire pour corriger la position des lignes de niveau de la fonction \(\psi \).

L’équation (1.2.16) comprend un terme de compression à gauche, ayant pour but d’affiner le profil de l’interface, et un terme de diffusion, à droite, permettant de garantir que l’interface garde son épaisseur caractéristique \(\varepsilon \). Il est important de noter que ces termes, comme le terme d’advection dans l’équation (1.2.15), sont écrits sous la forme conservative. Ainsi, en résolvant successivement les équations (1.2.15) et (1.2.16) on transporte l’interface \(\psi = 0.5 \) de manière plus conservative en gardant la forme de la fonction tangente hyperbolique.

Dans leurs simulations numériques, Olsson et Kreiss ont présenté des résultats très encourageants où les erreurs de conservation discrète ont été réduites d’un ordre de grandeur important en comparant avec des approches Level-Set classiques.

1.2.2.4 Coupled Level-Set and Volume of Fluid (CLSVOF) method

La méthode CLSVOF est une méthode purement Eulérienne. Elle met en œuvre un couplage entre les méthodes Level-Set et VOF.

Ces deux méthodes (Level-Set et VOF) sont très bien adaptées à la description d’un écoulement diphasique dont l’interface subit des changements géométriques conséquents.

La méthode Level-Set, étant définie comme une fonction distance signée, rend le calcul des propriétés géométriques (normale, courbure) direct et précis. Elle est
1.2 Modèles microscopiques

en outre relativement facile à mettre en œuvre aussi bien en 2D qu’en 3D en comparaison de la méthode VOF. En revanche, l’inconvénient majeur de la méthode Level-Set est sa mauvaise capacité de conserver la masse. À titre d’exemple, lorsque le maillage n’est pas assez fin, les bulles (ou gouttes) formées au cours d’une simulation peuvent avoir une tendance à rétrécir et vont finir par disparaître. À cet égard, la dépendance au maillage est manifeste pour ce type de méthode.

La méthode VOF est quant à elle basée sur l’utilisation de la fonction couleur qui représente la fraction volumique occupée par le fluide dans chaque cellule de calcul. La fonction couleur n’est pas continue à travers l’interface. Pour effectuer son transport, un algorithme de reconstruction (SLIC ou PLIC) doit être appliqué. La méthode VOF possède d’excellentes propriétés de conservation de la masse. À contrario, elle manque de précision pour le calcul des propriétés géométriques. Enfin, la mise en œuvre de l’algorithme de reconstruction est complexe en 3D.

Plusieurs tentatives pour améliorer la propriété de conservation de la masse de la méthode Level-Set ont été effectuées dans [57], [71]. Néanmoins, aujourd’hui la problématique demeure encore. En conséquence la communauté scientifique s’est tournée vers les méthodes de couplage.

La méthode CLSVOF a été introduite par Bourlioux & al. dans [5] et Sussman & al. dans [73]. Cette méthode bénéficie à la fois des avantages de la méthode Level-Set et de ceux de la méthode VOF. La masse est bien conservée, comme le montrent les études récentes ([47] et [92]), et les propriétés géométriques peuvent être facilement calculées. Malheureusement, en dépit de ces avantages importants, la mise en œuvre de cette méthode reste difficile ; en particulier, l’algorithme de reconstruction de la méthode VOF est complexe et toujours nécessaire pour la méthode CLSVOF.

1.2.3 Méthodes mixtes

Les méthodes mixtes représentent sans doute le meilleur choix en terme de précision pour la modélisation d’une interface dans un écoulement diphasique. Ce type de méthode permet de combiner la finesse de résolution des méthodes Lagrangiennes avec la robustesse des méthodes Eulériennes.

En effet, les méthodes Lagrangiennes sont de loin les plus précises [62] puisque elles bénéficient d’une résolution inférieure à la maille. De leur côté, les méthodes Eulériennes effectuent le traitement de changements topologiques naturellement (méthode Level-Set).

À l’heure actuelle il existe plusieurs variantes de couplage parmi les différentes méthodes. Cependant, nous ne présentons dans cette partie du manuscrit que les méthodes qui nous semblent les plus prometteuses.
1.2.3.1 Volume-of-Fluid Sub-Mesh (VOF-SM) method

Vincent & al. [87] proposent une nouvelle méthode de suivi d'interface dite Volume-of-Fluid Sub-Mesh (VOF-SM) capable de décrire des géométries très complexes tout en assurant une précision de calcul satisfaisante lorsque l'interface subit de fortes déformations (étirement et rupture). Les objectifs de cette méthode sont de généraliser le couplage entre les approches Eulérienne et Lagrangienne, d'être applicable aux grilles structurées curvilignes et d'optimiser la redistribution des marqueurs (particules) ainsi que la conservation de la masse.

La procédure de généralisation de la méthode VOF-SM utilise les techniques Marker And Cell [61], Particle In Cell [15] et la méthode Moving Particle Semi-implicit [44].

Les résultats présentés par Vincent & al. [87] montrent que la description de l'interface avec la méthode VOF-SM est une à deux fois meilleure que les autres méthodes VOF classiques mentionnées dans la littérature. De plus la méthode VOF-SM a été validée quant à sa capacité à simuler des écoulements à surface libre ainsi que des écoulements avec obstacles.

L'avantage de cette méthode est qu'elle n'engendre pas de diffusion numérique et assure la conservation de la masse d'un point de vue Lagrangien. Enfin, VOF-SM décrit l'écoulement multiphasique à plus petite échelle que les méthodes basées sur l'utilisation d'une approche totalement Eulérienne. Cependant, cette méthode peut exiger un coût important en mémoire et en temps de calcul.

1.2.3.2 Hybrid particle Level-Set method

La méthode "Hybrid particle Level-Set", proposée par Enright & al. [23] en 2002 est une méthode de couplage qui combine les meilleures propriétés des méthodes Eulérienne et Lagrangienne.

L'idée de base est simple : il s'agit de corriger les erreurs numériques dues à la description Eulérienne de l'interface à l'aide d'un solveur Lagrangien qui est naturellement plus précis.

La méthode "Hybrid particle Level-Set" consiste à placer un certain nombre de marqueurs (particules) près de l'interface (définie par le niveau zéro) et de les advector par la vitesse de l'écoulement. Les particules ne sont pas censées traverser l'interface, à moins que cette dernière n'ait pas été correctement localisée. Ainsi, si un marqueur initialement placé d'un coté de l'interface est détecté du coté opposé, cela signifie que la méthode Level-Set a engendré une erreur de capture de l'interface. La détection de cette erreur permet alors d'envisager sa correction par la reconstruction locale de l'interface en exploitant les informations données par les marqueurs.
1.3 Bilan

"échappés". Ceci permet d’obtenir avec la méthode Level-Set une précision d’échelle inférieure à la taille de la maille et donc de neutraliser le problème de conservation de la masse. Exactement de la même façon que pour la méthode Level-Set classique la méthode "Particle Level-Set" garantit l’accès direct aux propriétés géométriques grâce à la fonction Level-Set.

Les résultats présentés dans [23] sont aussi précis dans le cas du transport d’une forme géométrique complexe (cercle de Zalezak) que dans le cas de l’étude d’une interface placée dans un écoulement fortement cisailé (serpentin).

Malheureusement, la méthode "Particle Level-Set" est difficile à mettre en œuvre (surtout en 3D). L’un des inconvénients principaux des méthodes Lagrangiennes en général et de la méthode "Particle Level-Set" en particulier est l’optimisation de la distribution des marqueurs.

1.3 Bilan

Le tableau Tab. 1.1 regroupe les avantages et inconvénients des méthodes présentés plus haut.

Pour résumer, la principale difficulté des méthodes macroscopiques réside dans la modélisation des termes interfaciaux. Cependant, ces méthodes sont bien adaptées aux applications industrielles puisqu’elles permettent de simuler des phénomènes globaux tout en modélisant les plus petites échelles. Il est néanmoins important de savoir que l’implémentation de lois de coalescence adaptées nécessite d’établir des corrélations issues d’essais expérimentaux en laboratoire (fréquence de collision, taux de coalescence, etc.) [85]. C’est donc pour étudier plus en détails ces mécanismes de coalescence ou de rupture de gouttes que nous nous sommes concentrés sur les modèles microscopiques de l’approche locale.

Les modèles microscopiques (simulation numérique directe) sont mieux adaptés à l’application que nous souhaitons développer dans le cadre de notre étude et en particulier dans l’approche multi-échelle. En effet, les méthodes basées sur ces modèles sont des outils performants pour décrire les phénomènes de coalescences ou de ruptures de gouttes qui se produisent dans la zone d’émulsion dense. La description précise de ces phénomènes aide à leur compréhension et constitue une perspective prometteuse d’enrichissement des lois de fermeture pour les modèles macroscopiques.

Cependant, les modèles microscopiques sont coûteux en temps de calcul et le domaine d’écoulement doit se restreindre à quelques milliers de gouttes (ce qui est évidemment insuffisant pour modéliser un écoulement entier). Ainsi, le choix de ce type des modèles ne représente pour nous qu’une première étape dans cette étude.
État de l'Art : Différentes approches pour la modélisation d’un écoulement diphasique à phase dispersée

<table>
<thead>
<tr>
<th>Méthodes</th>
<th>Avantages</th>
<th>Inconvénients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modèles à deux fluides</td>
<td>- Équation d’état pour chaque fluide;</td>
<td>- Nombreux termes d’échanges interfaciaux à modéliser;</td>
</tr>
<tr>
<td></td>
<td>- Prise en compte des vitesses de glissement entre chaque phase;</td>
<td>- Nombreuses équations à résoudre;</td>
</tr>
<tr>
<td></td>
<td>- Application industrielle.</td>
<td>- Stabilité des schémas numériques lorsque (\alpha_k) tend vers 0.</td>
</tr>
<tr>
<td>Modèles de mélanges</td>
<td>- Nombre réduit d’équations à résoudre;</td>
<td>- Hypothèse d’homogénéité des phases;</td>
</tr>
<tr>
<td></td>
<td>- Application aisée en 3D et implémentation facile dans un code;</td>
<td>- Choix d’une seule équation d’état adaptée au problème;</td>
</tr>
<tr>
<td></td>
<td>- Application industrielle.</td>
<td>- Nécessité d’avoir des lois de fermeture pour évaluer les vitesses de glissement;</td>
</tr>
<tr>
<td>Méthode VOF</td>
<td>- Localisation explicite de l’interface;</td>
<td>- Utilisation d’algorithmes de reconstruction consommateurs et compliqués en 3D;</td>
</tr>
<tr>
<td></td>
<td>- Bonne conservation de la masse;</td>
<td>- Précision dépendante du maillage (diffusion du front);</td>
</tr>
<tr>
<td></td>
<td>- Efficacité en 2D, parallélisation facile.</td>
<td>- Accès difficile aux caractéristiques géométriques;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Application industrielle limitée.</td>
</tr>
<tr>
<td>Méthode Level-Set</td>
<td>- Localisation explicite de l’interface;</td>
<td>- Mauvaise conservation de la masse;</td>
</tr>
<tr>
<td></td>
<td>- Traitement automatique des changements de topologie;</td>
<td>- Utilisation d’algorithme de réinitialisation de la fonction distance;</td>
</tr>
<tr>
<td></td>
<td>- Accès direct aux caractéristiques géométriques;</td>
<td>- Précision dépendante du maillage (diffusion du front);</td>
</tr>
<tr>
<td></td>
<td>- Parallélisation efficace.</td>
<td>- Application industrielle limitée.</td>
</tr>
<tr>
<td>Méthode Level-Set Conservative</td>
<td>- Bonne conservation de la masse;</td>
<td>- Utilisation d’algorithme de réinitialisation de la fonction tangente hyperbolique;</td>
</tr>
<tr>
<td></td>
<td>- Localisation explicite de l’interface;</td>
<td>- Précision dépendante du maillage (diffusion du front);</td>
</tr>
<tr>
<td></td>
<td>- Traitement automatique des changements de topologie;</td>
<td>- Application industrielle limitée.</td>
</tr>
<tr>
<td></td>
<td>- Accès direct aux caractéristiques géométriques;</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Parallélisation efficace.</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 1.1 – Bilan sur les méthodes numériques de la modélisation d’un écoulement diphasique.
complexe de modélisation d’un écoulement diphasique dans le cadre industriel par une approche multi-échelle.

Nous avons vu précédemment que les modèles microscopiques sont représentés par deux grandes catégories : les méthodes Lagrangiennes et Eulériennes.

De manière générale, les méthodes Lagrangiennes peuvent être considérées comme très précises dans le suivi de l’interface. Cependant, elles sont moins efficaces pour gérer les grandes déformation. En outre, les algorithmes d’optimisation de la distribution des marqueurs (qui permettent d’augmenter le nombre des marqueurs dans les zones où il est nécessaire d’avoir une résolution très fine) rajoutent des contraintes supplémentaires qui sont la durée de simulation et la mémoire requise pour les calculs. Les propriétés géométriques ne sont pas directement calculées et nécessitent souvent l’application de techniques complémentaires. Enfin, la mise en œuvre des algorithmes Lagrangiens, déjà complexe en 2D, se complique encore considérablement en 3D. Tous ces inconvénients nous ont conduit à limiter l’application des méthodes Lagrangiennes pour notre étude.

Nous avons donc porté un intérêt plus particulier aux méthodes Eulériennes qui sont plus en mesure de suivre l’interface en cas de déformation conséquente. Pour ce type de méthodes, deux formalismes principaux se distinguent, VOF et Level-Set, pour lesquels l’interface est détectée indirectement par le biais d’un champ scalaire.

La méthode VOF souffrant de plusieurs défauts présentés dans la section 1.2.2.1 n’a pas été retenue pour la suite de ce travail.

La suite de ce manuscrit est donc consacrée à la méthode Level-Set. Nous analyserons en détail les avantages et inconvénients de cette méthode qui expliquent notre choix.

La mise en œuvre de cette méthode a nécessité l’emploi d’un certain nombre de moyens pour augmenter ses performances. A titre d’exemple, citons l’implémentation des schémas numériques spécifiques qui nous a permis de pallier les erreurs numériques à caractère dissipatif qui peuvent apparaître pendant la résolution de l’équation de transport et qui entraînent des pertes de masse considérables.

Nous avons également mis en œuvre un algorithme de réinitialisation pour faire face aux difficultés rencontrées dans les cas d’écoulements fortement cisaillés, afin de résoudre le problème de resserrement ou d’écartement de lignes de niveau de la fonction Level-Set.
Etat de l'Art : Differentes approches pour la modélisation d'un écoulement diphasique à phase dispersée
Chapitre 2

La méthode Level-Set

Sommaire

2.1 Motivation .. 25
2.2 La fonction Level-Set 26
 2.2.1 Équation de transport 27
 2.2.2 Propriétés 27
2.3 Résolution numérique de l’équation de transport 29
 2.3.1 Maillage et discrétisation 29
 2.3.2 Discrétisation temporelle 31
 2.3.3 Discrétisation spatiale 33
2.4 Algorithme de réinitialisation 36
 2.4.1 Problématique 36
 2.4.2 Équation de réinitialisation 37
 2.4.3 Résolution numérique 39
 2.4.4 Conclusion sur l’algorithme de réinitialisation . 42
2.5 Exemples de suivi d’interface 43
 2.5.1 Interface elliptique perturbée 43
 2.5.2 Serpentin 45
2.6 Conclusion sur la méthode de suivi d’interface 56

2.1 Motivation

Dans le chapitre précédent nous sommes arrivés à la conclusion que les méthodes
Eulériennes sont les mieux adaptées pour atteindre l’objectif de notre étude. En effet,
pour ce type de méthodes les phénomènes de coalescence ou de rupture des gouttes
sont pris en compte par la gestion naturelle des changements de topologie.
Notre choix s'est porté sur la méthode Level-Set pour décrire l'évolution en temps et en espace d'une interface. Cette méthode présente l'avantage de définir une fonction scalaire régulière à travers l'interface, grâce à laquelle les caractéristiques géométriques du problème sont calculées directement.

Comme nous l'avons déjà mentionné précédemment la mise en œuvre de la méthode Level-Set a nécessité l'emploi de schémas numériques robustes et précis afin d'éviter des pertes de masse significatives.

Nos choix de schémas numériques, pour la résolution des équations de transport et de réinitialisation ainsi que pour les autres caractéristiques relatives à la simulation des écoulements diphasiques, ont été motivés par l'analyse des travaux [16], [77], [80] et [84].

2.2 La fonction Level-Set

La méthode Level-Set a été introduite par Osher et Sethian [55] en 1988. Son principe est de définir dans le domaine de calcul une fonction scalaire (Level-Set) dont la courbe de niveau zéro est l'interface que l'on cherche à décrire.

Pour un point \(x \) quelconque de l'espace d'étude, la valeur de la fonction Level-Set en ce point se définit comme la distance normale minimale signée à l'interface \(\Gamma \), le signe dépendant de la phase dans laquelle se trouve le point \(x \), comme schématisé sur la Fig. 2.1.

![Fig. 2.1 – Définition de la fonction Level-Set permettant de localiser une interface \(\Gamma \).](image)

La fonction Level-Set peut être perçue comme une variété infinie d'iso-contours,
2.2 La fonction Level-Set

un iso-contour étant défini par l’ensemble des points à une distance donnée d de l’interface. Lorsque la distance d est nulle, l’iso-contour est l’interface elle-même, autrement dit : $\Gamma = \{ x | \phi(x) = 0 \}$.

Les lignes de niveau sont donc définies par ϕ, la fonction Level-Set :

\[
\left\{ \begin{array}{ll}
\phi(x, t) = 0, & x \in \Gamma \\
\phi(x, t) > 0, & x \in \Omega^+ \\
\phi(x, t) < 0, & x \in \Omega^-
\end{array} \right.
\] (2.2.1)

L’une des observations les plus évidentes est que la fonction distance signée est une fonction régulière qui permet de savoir immédiatement dans quel milieu se trouve le point x. Nous allons présenter toutes les autres propriétés de la fonction Level-Set en détail dans la section 2.2.2.

2.2.1 Équation de transport

Intéressons-nous maintenant à l’équation de transport associée à la méthode et qui décrit l’évolution spatio-temporelle de l’interface. Considérons un champ de vitesse u défini sur l’ensemble du domaine d’étude qui détermine le déplacement de l’interface. L’équation classique de transport s’écrit sous la forme suivante :

\[
\frac{\partial \phi}{\partial t} + u \cdot \nabla \phi = 0
\] (2.2.2)

Comme $u \cdot \nabla \phi = \nabla \cdot (u \phi) - \phi \nabla \cdot u$ et comme le champ de vitesse est à divergence nulle (fluide incompressible), l’équation (2.2.2) peut se réécrire sous une forme conservative :

\[
\frac{\partial \phi}{\partial t} + \nabla \cdot (u \phi) = 0
\] (2.2.3)

La résolution de l’équation de transport pour un écoulement diphasique incompressible sous la forme (2.2.3) permet alors de prédire les mouvements de l’interface dans un champ de vitesse donné.

2.2.2 Propriétés

Observons à présent les informations que nous fournit la fonction Level-Set.

- La localisation de l’interface est directement connue puisque le signe de la fonction $\phi(x, t)$ permet de savoir immédiatement dans quel milieu se trouve le point x, comme illustré sur la FIG. 2.1.
La méthode Level-Set

– La façon dont est définie la fonction Level-Set permet un l’accès direct aux caractéristiques géométriques locales de l’interface [55]. En effet, le vecteur normal \(\mathbf{n} \) à l’interface peut être directement calculé grâce à la fonction Level-Set \(\phi \) en utilisant l’équation (2.2.4).

\[
\mathbf{n} = \frac{\nabla \phi}{\| \nabla \phi \|} \quad \text{(2.2.4)}
\]

et la courbure \(\kappa \) de l’interface est définie par :

\[
\kappa = \nabla \cdot \left(\frac{\nabla \phi}{\| \nabla \phi \|} \right) = \nabla \cdot \mathbf{n} \quad \text{(2.2.5)}
\]

Grâce à la fonction Level-Set, la normale \(\mathbf{n} \) et la courbure \(\kappa \) de l’interface sont calculées dans tout le domaine. Le vecteur normal \(\mathbf{n} \) s’oriente dans le sens positif des contours et son calcul est rendu facile grâce à la propriété distance de la fonction Level-Set. Au-delà de l’accès direct à l’information, il faut également apprécier la qualité des calculs de la normale et de la courbure grâce à l’utilisation de la méthode Level-Set.

– La fonction Level-Set est une fonction régulière puisque pour un espace continu, on a :

\[
\| \nabla \phi(x, t) \| = 1 \quad \text{(2.2.6)}
\]

Ceci est encore une conséquence directe de la propriété distance. Cette propriété est très intéressante d’un point de vue numérique lorsque l’on désire transporter un champ scalaire. Il est toujours délicat de transporter un scalaire discontinu pour des raisons de précision, de stabilité et de diffusion des schémas numériques. Par conséquent, lorsque la fonction Level-Set possède une forte courbure locale, la propriété de régularité (2.2.6) peut être perdue.

La méthode Level-Set bénéficie d’autres d’avantages, tels que le traitement automatique des changements de topologie ou bien l’efficacité de la parallélisation.

Elle compte cependant deux inconvénients principaux :

– Tout d’abord, contrairement à la méthode VOF, la méthode Level-Set n’est pas conservative en masse. Parmi les différentes méthodes numériques développées, le couplage de la méthode Level-Set avec la méthode VOF [73], [47], [92] est souvent utilisé. Comme nous l’avons évoqué dans la section 1.2.2.4, le couplage avec la méthode VOF est assez difficile à mettre en place dans le cas 3D, puisqu’en plus de l’utilisation de l’algorithme de réinitialisation pour la fonc-
2.3 Résolution numérique de l’équation de transport

Dans cette partie du manuscrit, nous décrivons les schémas numériques employés pour la discrétisation de l’équation de transport de la fonction Level-Set (2.2.3), équation hyperbolique linéaire du premier ordre.

L’expérience numérique pratique montre que les schémas de discrétisation pour l’équation de transport doivent avoir un ordre de convergence ainsi qu’une précision suffisamment élevés pour obtenir des résultats convénables. L’analyse bibliographique nous a permis de voir que la majorité des auteurs ([16], [77], [84]) utilisent les schémas WENO ("Weighted Essentially Non-Oscillatory" présenté par Jiang dans [39]) du cinquième ordre pour atteindre de meilleurs résultats. Pour ce type de schéma, l’ordre de convergence peut être plus ou moins élevé en fonction du nombre de points discrets que l’on utilise sur le stencil. Plus ce nombre est grand, plus l’ordre de convergence du problème est important.

En ce qui nous concerne, nous avons implémenté le schéma WENO5 et le schéma TVD ("Total Variation Diminishing") Lax-Wendroff Superbee [86], [90], [94]. La comparaison entre ces deux schémas est présentée dans la section 2.5.2.2.

2.3.1 Maillage et discrétisation

Par souci de simplicité de mise en place des schémas numériques, nous avons choisi un maillage cartésien uniforme. La fonction Level-Set est définie sur le volume de contrôle comme présenté sur la FIG. 2.2.
La méthode Level-Set

Fig. 2.2 – Volume de contrôle Ω_C associé à la discrétisation de l’équation de transport de la fonction Level-Set en 2D.

Le centre des cellules est repéré par le couple des coordonnées (x_C, y_C) tel que,

$$x_C = \frac{1}{2} (x_s + x_n), \quad y_C = \frac{1}{2} (y_e + y_w)$$ \hspace{1cm} (2.3.7)

Les pas d’espace respectifs Δx_C et Δy_C sont définis de façon suivante :

$$\Delta x_C = x_n - x_s, \quad \Delta y_C = y_w - y_e$$ \hspace{1cm} (2.3.8)

La fonction Level-Set ϕ est définie au centre de la maille C sur le volume de contrôle Ω_C, tandis que les composantes de la vitesse u et v sont localisées sur les faces des cellules Fig. 2.2.

Nous allons maintenant présenter la discrétisation de l’équation de transport (2.2.3) par la méthode des volumes finis en 2D. En intégrant cette équation sur le volume de contrôle Ω_C on obtient :

$$\int_{\Omega_C} \frac{\partial \phi}{\partial t} \, d\Omega_C + \int_{\Omega_C} \nabla \cdot F \, d\Omega_C = 0$$ \hspace{1cm} (2.3.9)

avec $F = u \phi$ \hspace{1cm} (2.3.10)

Le théorème de Green-Ostrogradski nous permet d’écrire :

$$\int_{\Omega_C} \frac{\partial \phi}{\partial t} \, d\Omega_C + \int_{S_C} F \cdot n \, dS_C = 0$$ \hspace{1cm} (2.3.11)
2.3 Résolution numérique de l’équation de transport

\((\phi_{C}^{k+1} - \phi_{C}^{k}) \frac{\Delta x_{C} \Delta y_{C}}{\Delta t} + (F_{n}^{k} - F_{n}^{k}) \Delta y_{C} + (F_{w}^{k} - F_{w}^{k}) \Delta x_{C} = 0 \) \quad (2.3.12)

où \(F \) est le flux de convection discrétisé sur chaque face du volume de contrôle \(\Omega_{C} \). Les indices \(n, s, w, e \) indiquent la localisation du flux \(F \) et des composantes de la vitesse \(u \) et \(v \), alors que les indices \(N, S, W, E \) et \(C \) indiquent la position de la fonction \(\phi \). Le calcul du flux \(F \) dépend du choix du schéma de discrétisation en espace que nous exposons dans la section 2.3.3.

2.3.2 Discrétisation temporelle

La discrétisation de notre équation est explicite. Ainsi, un critère sur le pas de temps est nécessaire pour assurer la stabilité des calculs. Pour ce type d’équation, nous pouvons obtenir la stabilité en utilisant la condition CFL ("Courant-Friedrichs-Lewy")

\[\frac{\Delta x}{\Delta t} > |u| \quad \Rightarrow \quad \Delta t < \frac{\Delta x}{\max \{|u|\}} \] \quad (2.3.13)

Cette condition peut également être interprétée comme une condition qui interdit à une courbe caractéristique de la solution « d’avancer » de plus d’une maille \(\Delta x \) pendant un intervalle de temps \(\Delta t \). Finalement nous utilisons la relation suivante :

\[\Delta t = cfl \frac{\Delta x}{\max \{|u|\}} \] \quad (2.3.14)

où \(cfl \) est un nombre compris entre 0 et 1, appelé nombre de Courant-Friedrichs-Lewy, qui peut varier suivant les schémas numériques utilisés. En 3D, cette relation devient :

\[\Delta t = \frac{cfl}{\max \{|u|\}} \frac{\max \{|u|\}}{\Delta x} + \frac{\max \{|v|\}}{\Delta y} + \frac{\max \{|w|\}}{\Delta z} \] \quad (2.3.15)

Pour la discrétisation temporelle de l’équation de transport nous avions dans un premier temps implémenté le schéma d’Euler explicite à l’ordre 1. Celui-ci n’ayant pas donné satisfaction, nous nous sommes tournés par la suite vers le schéma de Runge-Kutta. Le lecteur trouvera plus de détails sur ces schémas numériques dans les sections qui suivent.
2.3.2.1 Schéma d’Euler explicite

L’équation de transport s’écrit sous la forme d’une équation différentielle ordinaire :

$$\frac{\partial \phi}{\partial t} = L(\phi)$$ \hspace{1cm} (2.3.16)

où $L(\phi)$ représente le terme d’advection de l’équation de transport $\mathbf{u} \cdot \nabla \phi$.

En appliquant le schéma d’Euler à l’équation (2.3.16) on obtient :

$$\phi^{n+1} = \phi^n + \Delta t \, L(\phi^n)$$ \hspace{1cm} (2.3.17)

Le schéma d’Euler est très utilisé pour sa simplicité d’implémentation et son faible coût en temps de calcul. En revanche, pour les simulations complexes nécessitant une bonne précision, il est souvent insuffisant (voir la Fig. 2.11 (a) et (b)). Dans le cas de la résolution de l’équation de transport pour la fonction Level-Set des schémas numériques stables et précis sont souvent requis. Notre choix s’est porté sur le schéma de Runge-Kutta d’ordre 2 qui représente un très bon compromis entre la stabilité numérique et la précision.

2.3.2.2 Schéma Runge-Kutta

Le schéma de Runge-Kutta est un schéma à pas multiples. Afin d’obtenir la valeur finale ϕ^{n+1}, une ou plusieurs valeurs intermédiaires doivent être calculées au cours d’un pas de temps. La quantité de ces étapes intermédiaires représente l’ordre du schéma. Nous présentons ici le schéma de Runge-Kutta de deuxième ordre que nous avons finalement utilisé pour toutes nos simulations.

1er pas : $\phi^{(1)} = \phi^n + \Delta t \, L(\phi^n)$

2ème pas : $\phi^{(2)} = \phi^{(1)} + \Delta t \, L(\phi^{(1)})$

résultat : $\phi^{n+1} = \frac{\phi^n + \phi^{(2)}}{2}$

L’utilisation du schéma Runge-Kutta améliore nettement les résultats numériques par rapport au schéma Euler. Cependant, son inconvénient principal est l’augmentation importante du temps de calcul.

La description des schémas de Runge-Kutta d’ordre supérieur que 2 est donnée par Shu et Osher dans [66].
2.3 Résolution numérique de l’équation de transport

2.3.3 Discrétisation spatiale

Avant de faire un choix de schéma de discrétisation, il est très important de tenir compte de toutes ses caractéristiques : diffusion, robustesse, ordre de convergence suffisamment élevé, etc. De plus, pour décrire des structures fines dont l’épaisseur est de l’ordre d’une ou deux mailles, la précision sur la résolution de l’équation de transport pour la méthode Level-Set doit être optimale en raison de pertes de masse non négligeables.

Dans un premier temps, nous avons implémenté le schéma TVD Lax-Wendroff Superbee. Il peut être un compromis entre la précision et le temps de calcul par rapport aux autres schémas que nous avons utilisés ensuite pour la discrétisation spatiale (ENO3 [67], WENO5 [38], [39]). Par la suite, le schéma WENO5 s’est avéré beaucoup plus précis et nous a permis d’obtenir une précision de la solution nettement supérieure.

Pour simplifier, nous n’exposons ici les schémas numériques de discrétisation spatiale de l’équation de transport qu’en deux dimensions. De plus, la discrétisation avec le schéma WENO5 n’est présentée que pour le calcul des flux dans la direction x. Pour les directions y et z la mise en œuvre est identique.

2.3.3.1 Schéma TVD Lax-Wendroff Superbee

La recherche de schémas qui bénéficieraient à la fois des propriétés de robustesse des schémas monotones près des discontinuités et de la précision des schémas de deuxième ordre dans les zones de régularité nous a conduits à introduire une nouvelle notion : la variation totale (VT), définie de la façon suivante :

\[VT (\phi^k) = \sum_i |\phi_i^k - \phi_{i-1}^k| \quad (2.3.18) \]

De tels schémas numériques réduisant la variation totale de la solution sont appelés schémas TVD pour "Total Variation Diminishing". Un schéma est dit TVD si, pour tout \(k \geq 0 \), on a :

\[VT (\phi^{k+1}) \leq VT (\phi^k) \quad (2.3.19) \]

Nous utilisons un schéma TVD à limiteur de pente quasi d’ordre deux, c’est à dire d’ordre deux sauf au voisinage des extrémités de la solution. En effet, le schéma TVD est construit à partir du schéma du deuxième ordre de Lax-Wendroff en utilisant le limiteur de pente appelé Superbee [76]. En partant de l’équation (2.3.12), l’équation de transport 2D discrétisée avec un schéma TVD Lax-Wendroff Superbee s’écrit :
La méthode Level-Set

\[
\phi_{C}^{k+1} = \phi_{C}^{k} - \frac{\Delta t}{\Delta x_{C}} (F_{n}^{k} - F_{s}^{k}) - \frac{\Delta t}{\Delta y_{C}} (F_{w}^{k} - F_{e}^{k})
\] \quad (2.3.20)

avec

\[
\begin{align*}
F_{n}^{k} &= 0.5 \left[u_{n}^{k+1} (S_{1n} + S_{2n}) - |u_{n}^{k+1}| (S_{1n} - S_{2n}) \right] \\
F_{s}^{k} &= 0.5 \left[u_{s}^{k+1} (S_{1s} + S_{2s}) - |u_{s}^{k+1}| (S_{1s} - S_{2s}) \right] \\
F_{w}^{k} &= 0.5 \left[u_{w}^{k+1} (S_{1w} + S_{2w}) - |u_{w}^{k+1}| (S_{1w} - S_{2w}) \right] \\
F_{e}^{k} &= 0.5 \left[u_{e}^{k+1} (S_{1e} + S_{2e}) - |u_{e}^{k+1}| (S_{1e} - S_{2e}) \right]
\end{align*}
\] \quad (2.3.21)

où

\[
\begin{align*}
S_{1n} &= \phi_{N}^{k} - \frac{x_{N} - x_{n}}{x_{NN} - x_{N}} \varphi_{nn} \left(\phi_{NN}^{k} - \phi_{N}^{k} \right) \\
S_{2n} &= \phi_{C}^{k} + \frac{x_{n} - x_{C}}{x_{N} - x_{C}} \varphi_{n} \left(\phi_{N}^{k} - \phi_{C}^{k} \right) \\
S_{1s} &= \phi_{C}^{k} - \frac{x_{C} - x_{s}}{x_{N} - x_{C}} \varphi_{n} \left(\phi_{N}^{k} - \phi_{C}^{k} \right) \\
S_{2s} &= \phi_{S}^{k} + \frac{x_{s} - x_{S}}{x_{C} - x_{S}} \varphi_{s} \left(\phi_{C}^{k} - \phi_{S}^{k} \right) \\
S_{1w} &= \phi_{W}^{k} - \frac{y_{W} - y_{w}}{y_{WW} - y_{W}} \varphi_{ww} \left(\phi_{WW}^{k} - \phi_{W}^{k} \right) \\
S_{2w} &= \phi_{C}^{k} + \frac{y_{w} - y_{C}}{y_{W} - y_{C}} \varphi_{w} \left(\phi_{W}^{k} - \phi_{C}^{k} \right) \\
S_{1e} &= \phi_{C}^{k} - \frac{y_{C} - y_{e}}{y_{W} - y_{C}} \varphi_{w} \left(\phi_{W}^{k} - \phi_{C}^{k} \right) \\
S_{2e} &= \phi_{E}^{k} + \frac{y_{e} - y_{E}}{y_{C} - y_{E}} \varphi_{e} \left(\phi_{C}^{k} - \phi_{E}^{k} \right)
\end{align*}
\] \quad (2.3.22)

où \(\varphi \) est le limiteur de pente Superbee. Par exemple, sur la face \(n \), \(\varphi \) est défini de la façon suivante :

\[
\varphi_{n} = \varphi (\xi_{n}^{k}) = \max \left(0, \min \left(1, 2 \xi_{n}^{k} \right), \min \left(2, \xi_{n}^{k} \right) \right) \quad \text{avec} \quad \xi_{n}^{k} = \frac{\phi_{C}^{k} - \phi_{S}^{k}}{\phi_{N}^{k} - \phi_{C}^{k}}
\] \quad (2.3.23)

Les résultats numériques de discrétisation avec le schéma TVD LW Superbee sont présentés dans la section 2.5.2 sur le cas test académique du serpentin.

2.3.3.2 Schéma WENO5

L’idée de base du schéma WENO5 consiste à utiliser les techniques de lissage et de pondération. Contrairement à sa forme non conservative, le schéma WENO5
2.3 Résolution numérique de l’équation de transport

Fig. 2.3 – Stencils de discrétisation pour le schéma WENO5.

conservatif n’est pas appliqué sur les dérivées discrètes du premier ordre, mais directement sur les valeurs des variables à discrétiser (ϕ dans notre cas).

\begin{align*}
a_1^- &= \phi_{SS} & a_1^+ &= \phi_{NNN} & b_1^- &= \phi_{SSS} & b_1^+ &= \phi_{NN} \\
a_2^- &= \phi_{S} & a_2^+ &= \phi_{NN} & b_2^- &= \phi_{SS} & b_2^+ &= \phi_{N} \\
a_3^- &= \phi_{C} & a_3^+ &= \phi_{N} & b_3^- &= \phi_{S} & b_3^+ &= \phi_{C} \\
a_4^- &= \phi_{N} & a_4^+ &= \phi_{C} & b_4^- &= \phi_{C} & b_4^+ &= \phi_{S} \\
a_5^- &= \phi_{NN} & a_5^+ &= \phi_{S} & b_5^- &= \phi_{N} & b_5^+ &= \phi_{SS}
\end{align*}

Nous présentons ici la procédure complète pour le calcul des flux dans la direction \(x (F_k^k \text{ et } F_s^k) \). Dans la direction \(y \) les flux \(F_w^k \) et \(F_e^k \) sont calculés de manière analogue.

\begin{align*}
S_1^\pm &= 13 \left(a_1^\pm - 2a_2^\pm + a_3^\pm \right)^2 + 3 \left(a_1^\pm - 4a_2^\pm + 3a_3^\pm \right)^2 \\
S_2^\pm &= 13 \left(a_2^\pm - 2a_3^\pm + a_4^\pm \right)^2 + 3 \left(a_2^\pm - a_4^\pm \right)^2 \\
S_3^\pm &= 13 \left(a_3^\pm - 2a_4^\pm + a_5^\pm \right)^2 + 3 \left(3a_3^\pm - 4a_4^\pm + a_5^\pm \right)^2
\end{align*} \quad (2.3.24)

\begin{align*}
R_1^\pm &= \frac{a_1^\pm}{3} - \frac{7a_2^\pm}{6} + \frac{11a_3^\pm}{6} \\
R_2^\pm &= -\frac{a_2^\pm}{6} + \frac{5a_3^\pm}{6} + \frac{a_4^\pm}{3} \\
R_3^\pm &= \frac{a_3^\pm}{3} + \frac{5a_4^\pm}{6} - \frac{a_5^\pm}{6}
\end{align*}

Les pondérations : \(p_1^\pm = \frac{1}{(\epsilon + S_1^\pm)^2} \), \(p_2^\pm = \frac{6}{(\epsilon + S_2^\pm)^2} \), \(p_3^\pm = \frac{3}{(\epsilon + S_3^\pm)^2} \)

où \(\epsilon \) est une constante généralement fixée à \(10^{-6} \) et revêt un caractère préventif pour pallier les situations où le dénominateur est nul.

Les valeurs dont nous cherchons à calculer \(\phi_n^{WENO\pm} \) pour le flux \(F_n \) sont alors lissées de la façon suivante :

\[\phi_n^{WENO\pm} = \frac{p_1^\pm R_1^\pm + p_2^\pm R_2^\pm + p_3^\pm R_3^\pm}{p_1^\pm + p_2^\pm + p_3^\pm} \] \quad (2.3.25)

En remplaçant les valeurs de \(a^\pm \) définies au début de cette section par les va-
leurs b^\pm et en répétant la procédure de manière similaire nous pouvons déterminer ϕ^WENO^\pm.

Pour finir, les flux sont calculés de la façon suivante :

\[
\begin{align*}
F_n^k &= u_n \phi_n^{WENO^-} \quad \text{si } u_n > 0 & F_n^k &= u_n \phi_n^{WENO^+} \quad \text{si } u_n < 0 \\
F_s^k &= u_s \phi_s^{WENO^-} \quad \text{si } u_s > 0 & F_s^k &= u_s \phi_s^{WENO^+} \quad \text{si } u_s < 0 \\
F_w^k &= v_w \phi_w^{WENO^-} \quad \text{si } v_w > 0 & F_w^k &= v_w \phi_w^{WENO^+} \quad \text{si } v_w < 0 \\
F_e^k &= v_e \phi_e^{WENO^-} \quad \text{si } v_e > 0 & F_e^k &= v_e \phi_e^{WENO^+} \quad \text{si } v_e < 0
\end{align*}
\]

(2.3.26)

2.4 Algorithme de réinitialisation

Dans cette partie, nous nous penchons sur l’un des inconvénients majeurs de la méthode Level-Set, la perte de la propriété distance, et décrivons une solution pour y remédier.

2.4.1 Problématique

Comme nous l’avons déjà noté ci-dessus, l’une des principales difficultés pour la simulation d’écoulements diphasiques incompressibles avec la méthode Level-Set réside dans l’écartement ou le resserrement des lignes de niveau, en particulier lorsque la fonction $\phi(x,t)$ est transportée dans un écoulement cisaillé.

Pour mieux comprendre ce phénomène nous avons réalisé le cas-test du serpentin (Fig. 2.4) qui est plus détaillé dans la section 2.5.2.

A l’état initial (Fig. 2.4, (a)), toutes les lignes de niveaux sont bien calculées selon la définition de la méthode Level-Set. Au bout d’un temps Δt, l’advection par un champ de vitesse a provoqué le resserrement des lignes de niveaux à certains endroits et l’écartement à d’autres (Fig. 2.4, (b)).

Dans un tel cas de champ de vitesse fortement cisaillé, la méthode devient alors imprécise et la propriété de distance algébrique est perdue ($\|\nabla \phi(x,t)\| \neq 1$). Même si cela ne perturbe pas la localisation de l’interface, le calcul des propriétés géométriques en pâtit puisqu’il est réalisé à partir du gradient de cette fonction distance. C’est pourquoi il est nécessaire d’utiliser des algorithmes de "redistanciation" ou de réinitialisation de la fonction Level-Set afin de corriger la position des lignes de niveau par rapport à la ligne de niveau 0, de manière à respecter la propriété de distance algébrique (2.2.6).

Cet algorithme de réinitialisation de la fonction Level-Set, que nous exposons
2.4 Algorithme de réinitialisation

Dans la suite, présente de nombreux avantages. Il permet de calculer avec précision les caractéristiques géométriques de l’interface et de corriger cette perte de la propriété distance signée.

2.4.2 Équation de réinitialisation

Sussman, Smereka et Osher [74] en 1994 ont développé un algorithme de réinitialisation de la fonction Level-Set. Le principe de cet algorithme est de corriger de façon itérative la position des lignes de niveau (iso-contours) à partir de la seule ligne de niveau valable qu’est l’interface. Cette correction doit être faite de manière à respecter la propriété de distance algébrique. L’algorithme de réinitialisation se présente sous la forme d’une équation instationnaire aux dérivées partielles que l’on doit résoudre à la fin de chaque pas de temps physique. La réinitialisation complète de la fonction Level-Set sur l’ensemble du domaine correspond à la solution stationnaire de l’équation d’Hamilton-Jacobi ci-dessous :

\[
\frac{\partial \Phi}{\partial \tau} = \text{sign}(\phi)(1 - \|\nabla \phi\|) \tag{2.4.27}
\]

où \(\tau\) est un temps fictif de réinitialisation de la fonction \(\phi\). Cette équation (2.4.27) doit être résolue avec la condition initiale suivante :

\[
\Phi(x, t, \tau = 0) = \phi(x, t) \tag{2.4.28}
\]
En théorie, l’équation (2.4.27) ne modifie pas la position de l’interface et est donc utilisée pour recalculer la position des autres lignes de niveau de manière indépendante, en respectant la propriété de distance algébrique. En pratique, cependant, les erreurs importantes de discrétisation introduites par les schémas numériques peuvent causer un changement de la position de l’interface. Ce phénomène est bien connu dans la communauté scientifique [31], [32] et [63]. Il est donc important d’employer des schémas peu diffusifs d’ordre suffisamment élevé.

L’équation (2.4.27) peut être mise sous une forme particulière en faisant apparaître la vitesse de propagation des courbes caractéristiques w :

$$\frac{\partial \Phi}{\partial \tau} + w \cdot \nabla \Phi = \text{sign}(\phi)$$

avec $w = \text{sign}(\phi) \frac{\nabla \Phi}{\|\nabla \Phi\|}$ (2.4.29)

Sous sa nouvelle forme, nous reconnaissons une équation hyperbolique non-linéaire, qui ressemble beaucoup à l’équation de transport (2.2.2). On remarque également que les courbes caractéristiques sont orientées dans la direction normale à l’interface, mais vers l’extérieur. Ceci signifie que le processus de réinitialisation se propagera des points les plus proches de l’interface vers les points les plus éloignés, comme illustré sur la Fig. 2.5, par les vecteurs de la vitesse w.

![Fig. 2.5 – Vitesse w correspondant à la propagation de la redistanciation des lignes de niveau.](image)

En pratique, la fonction Level-Set ϕ doit respecter la propriété distance (2.2.6) près de l’interface, ce qui signifie qu’en réalité nous n’avons pas besoin de réinitialiser toutes les lignes de niveau dans l’ensemble du domaine [68]. Ainsi seulement deux pas de temps fictif de l’algorithme de réinitialisation sont suffisants pour réinitialiser correctement la fonction Level-Set ϕ à chaque pas de temps physique [77].
2.4.3 Résolution numérique

Pour résoudre l’équation (2.4.27) nous utilisons l’algorithme décrit par Sussman & al. [74] avec le schéma de discrétisation présenté par Jiang [38].

L’équation (2.4.27) peut se réécrire sous la forme générale des équations de Hamilton-Jacobi de la manière suivante :

\[
\frac{\partial \Phi}{\partial t} = \hat{H} (D_x^+ \Phi_C, D_x^- \Phi_C, D_y^- \Phi_C, D_y^+ \Phi_C)
\]

(2.4.30)

où \(\hat{H} \) est l’Hamiltonien numérique et où \(D_x^+ \Phi_C, D_x^- \Phi_C, D_y^- \Phi_C \) et \(D_y^+ \Phi_C \) sont des approximations WENO au 5ème ordre des dérivées premières décentrées amont et aval de \(\Phi \) au point \(x_C \) [16].

\[
\Delta_x^+ \Phi_C = \Phi_N - \Phi_C, \quad \Delta_x^- \Phi_C = \Phi_C - \Phi_S
\]
\[
\Delta_y^+ \Phi_C = \Phi_W - \Phi_C, \quad \Delta_y^- \Phi_C = \Phi_C - \Phi_E
\]

(2.4.31)

\[
D_x^+ \Phi_C = \frac{1}{12} \left(-\frac{\Delta_x^+ \Phi_{SS}}{\Delta x} + 7 \frac{\Delta_x^+ \Phi_S}{\Delta x} + 7 \frac{\Delta_x^+ \Phi_C}{\Delta x} - \frac{\Delta_x^+ \Phi_N}{\Delta x} \right) + \Phi^{WENO} \left(\frac{\Delta_x^+ \Delta_x^+ \Phi_{NN}}{\Delta x}, \frac{\Delta_x^- \Delta_x^+ \Phi_N}{\Delta x}, \frac{\Delta_x^- \Delta_x^+ \Phi_C}{\Delta x}, \frac{\Delta_x^- \Delta_x^+ \Phi_S}{\Delta x} \right)
\]

\[
D_x^- \Phi_C = \frac{1}{12} \left(-\frac{\Delta_x^+ \Phi_{SS}}{\Delta x} + 7 \frac{\Delta_x^+ \Phi_S}{\Delta x} + 7 \frac{\Delta_x^- \Phi_C}{\Delta x} - \frac{\Delta_x^- \Phi_N}{\Delta x} \right) - \Phi^{WENO} \left(\frac{\Delta_x^- \Delta_x^+ \Phi_{SS}}{\Delta x}, \frac{\Delta_x^- \Delta_x^+ \Phi_S}{\Delta x}, \frac{\Delta_x^- \Delta_x^+ \Phi_C}{\Delta x}, \frac{\Delta_x^- \Delta_x^+ \Phi_N}{\Delta x} \right)
\]

(2.4.32)

\[
D_y^+ \Phi_C = \frac{1}{12} \left(-\frac{\Delta_y^+ \Phi_{EE}}{\Delta y} + 7 \frac{\Delta_y^+ \Phi_E}{\Delta y} + 7 \frac{\Delta_y^+ \Phi_C}{\Delta y} - \frac{\Delta_y^+ \Phi_W}{\Delta y} \right) + \Phi^{WENO} \left(\frac{\Delta_y^- \Delta_y^+ \Phi_{WW}}{\Delta y}, \frac{\Delta_y^- \Delta_y^+ \Phi_W}{\Delta y}, \frac{\Delta_y^- \Delta_y^+ \Phi_C}{\Delta y}, \frac{\Delta_y^- \Delta_y^+ \Phi_E}{\Delta y} \right)
\]

\[
D_y^- \Phi_C = \frac{1}{12} \left(-\frac{\Delta_y^+ \Phi_{EE}}{\Delta y} + 7 \frac{\Delta_y^+ \Phi_E}{\Delta y} + 7 \frac{\Delta_y^- \Phi_C}{\Delta y} - \frac{\Delta_y^- \Phi_W}{\Delta y} \right) - \Phi^{WENO} \left(\frac{\Delta_y^- \Delta_y^+ \Phi_{EE}}{\Delta y}, \frac{\Delta_y^- \Delta_y^+ \Phi_E}{\Delta y}, \frac{\Delta_y^- \Delta_y^+ \Phi_C}{\Delta y}, \frac{\Delta_y^- \Delta_y^+ \Phi_W}{\Delta y} \right)
\]

(2.4.32)

où par exemple \(\Delta_x^- \Delta_x^+ \Phi_C = \Delta_x^- (\Phi_N - \Phi_C) = (\Phi_N - 2 \Phi_C + \Phi_S), \) etc.

et où \(\Phi^{WENO} (a, b, c, d) = \frac{1}{3} \omega_0 (a - 2b + c) + \frac{1}{6} (\omega_2 - \frac{1}{2}) (b - 2c + d) \)

(2.4.33)
La méthode Level-Set

avec

\[
\begin{align*}
\omega_0 &= \frac{\alpha_0}{\alpha_0 + \alpha_1 + \alpha_2} \\
\omega_2 &= \frac{\alpha_2}{\alpha_0 + \alpha_1 + \alpha_2}
\end{align*}
\]

\[
\begin{align*}
\alpha_0 &= \frac{1}{(\varepsilon + IS_0)^2} \\
\alpha_1 &= \frac{6}{(\varepsilon + IS_1)^2} \\
\alpha_2 &= \frac{3}{(\varepsilon + IS_2)^2}
\end{align*}
\]

\[
\begin{align*}
IS_0 &= 13 (a - b)^2 + 3 (a - 3b)^2 \\
IS_1 &= 13 (b - c)^2 + 3 (b + c)^2 \\
IS_2 &= 13 (c - d)^2 + 3 (3c - d)^2
\end{align*}
\]

Il reste à choisir un flux pour l’Hamiltonien. Pour cela nous avons utilisé un flux de Godunov ([38], [74]) qui est défini de la façon suivante :

\[
\dot{H} \left(D_x^-\Phi_C, D_x^+\Phi_C, D_y^-\Phi_C, D_y^+\Phi_C \right) = \dot{H} \left(a, b, c, d \right)
\]

\[
\dot{H} \left(a, b, c, d \right) = \begin{cases}
\text{sign}(\phi) \left(\sqrt{\max \left(\left(a^+ \right)^2, \left(b^- \right)^2 \right)} + \max \left(\left(c^+ \right)^2, \left(d^- \right)^2 \right) - 1 \right) & \text{si } \phi_C \geq 0 \\
\text{sign}(\phi) \left(\sqrt{\max \left(\left(a^- \right)^2, \left(b^+ \right)^2 \right)} + \max \left(\left(c^- \right)^2, \left(d^+ \right)^2 \right) - 1 \right) & \text{sinon}
\end{cases}
\]

avec la notation classique \(f^+ = \max(f, 0) \) et \(f^- = \min(f, 0) \) pour tout réel \(f \).

En ce qui concerne la fonction \text{sign}(\phi), elle est approchée numériquement par une fonction lissée d’après Sussman & al. [74] :

\[
\text{sign}_\Delta(\phi) = \begin{cases}
-1 & \phi < -\Delta x \\
\phi & \left| \phi \right| \leq \Delta x \\
1 & \phi > \Delta x
\end{cases}
\]

où \(\Delta x \) est le pas d’espace.

Ce lissage est nécessaire pour obtenir de meilleures propriétés de conservation et pour assurer la stabilité. Peng & al. [57] raffinent cette approche en proposant de choisir la définition suivante de la fonction "sign" :

\[
\text{sign}(\phi) = \frac{\phi}{\sqrt{\phi^2 + \left(\nabla \phi \right)^2} (\Delta x)^2}
\]

(2.4.39)
2.4 Algorithme de réinitialisation

Pour mieux comprendre ce phénomène de lissage de la fonction "sign" nous avons réalisé le cas-test présenté sur les Figs. 2.6 et 2.7.

![Diagram](image)

Fig. 2.6 – État initial des lignes de niveau d’ellipse.

A l’instant initial (Fig. 2.6), 11 lignes de niveau sur l’intervalle $\phi \in [-0.3; 0.3]$ sont positionnées autour de l’interface de façon resserrée. Le champ de vitesse physique est nul. Au cours des 50 pas de temps fictifs de l’algorithme de réinitialisation, ces lignes de niveau se desserrent petit à petit et se fixent à intervalles réguliers en partant du niveau zéro.

Sur la Fig. 2.7 (a), pour la définition de la fonction "sign" nous avons utilisé l’équation (2.4.38), tandis que la définition améliorée définie par la relation (2.4.39) est présentée sur la Fig. 2.7 (b). On remarque que dans le premier cas (Fig. 2.7 (a)), le niveau zéro représenté par une ligne bleue épaisse s’altère de façon assez prononcée : la réinitialisation provoque un changement non négligeable de l’interface. En revanche, dans le deuxième cas (Fig. 2.7 (b)), elle reste parfaitement identique à son état initial après 50 pas de temps fictifs.

Pour avoir plus de détails sur l’amélioration de la fonction "sign" de la méthode de réinitialisation, nous vous invitons à prendre connaissance de l’article de Peng & al. [57].

Notons que la condition de stabilité CFL pour le schéma présenté ci-dessus est $\Delta \tau < \Delta x$. Cette condition a été obtenue dans [63] en respectant la formulation lissée de la fonction "sign". Pour les simulations qui suivent le pas de temps fictif a été choisi de manière suivante [16] :

$$\Delta \tau = 0.25 \text{ ou } 0.5 \Delta x$$

(2.4.40)
Fig. 2.7 – Les lignes de niveau après $N = 50$ itérations : (a) la fonction "sign" est calculée grâce à l’équation (2.4.38) ; (b) la fonction "sign" est calculée grâce à l’équation (2.4.39)

2.4.4 Conclusion sur l’algorithme de réinitialisation

Comme nous l’avons mentionné ci-dessus les erreurs importantes de discrétisation de l’équation de Hamilton-Jacobi introduites par les schémas numériques et la façon de calculer la fonction "sign" peuvent provoquer un déplacement important de la position de l’interface lorsque nous utilisons l’algorithme de réinitialisation [31], [32] et [63].

Russo et Smereka [63] exposent une légère modification de l’algorithme de réinitialisation d’origine de Sussman & al. [74] en proposant d’utiliser la méthode "réellement upwind" pour la résolution de l’équation de Hamilton-Jacobi. Cette modification consiste à calculer les dérivées en utilisant seulement les points du même coté le l’interface afin de limiter le flux d’information traversant cette dernière. Les résultats présentés par Russo et Smereka [63] montrent que grâce à cette nouvelle méthode, la position de l’interface est très peu modifiée et surtout que le déplacement est constant pendant tout le temps de calcul. Plus précisément, l’interface change légèrement de position après la première itération et ne bouge plus dans la suite. En revanche, Hartmann & al. [31] montrent que dans certains cas, la méthode présentée par Russo et Smereka [63] produit des oscillations sur l’interface.

En ce qui nous concerne, pour remédier à ce problème de déplacement de l’interface nous avons utilisé le schéma d’ordre élevé exposé ci-dessus avec la formulation (2.4.39) pour la fonction sign lissée. Les résultats présentés par Vigneaux [84]
2.5 Exemples de suivi d’interface

Avant de passer à la présentation de la modélisation d’un écoulement diphasique (résolution des équations de Navier-Stokes) nous devons valider notre outil de suivi d’interface.

Dans cette partie du manuscrit nous exposons les cas-tests qui nous ont permis de justifier nos choix de schémas numériques pour le suivi d’interface avec la méthode Level-Set.

Lors de ces cas-tests (serpentin, ellipse), nous imposons un champs de vitesse donné pour étudier l’évolution au cours du temps de l’interface et des lignes de niveau.

Le cas-test du serpentin permet de quantifier la capacité de la méthode Level-Set à transporter l’interface dans un écoulement cisailé. Ainsi nous pouvons étudier le transport de structures longues et très fines.

Pour les raisons que nous venons d’exposer, la méthode Level-Set nécessite l’utilisation de l’algorithme de réinitialisation dont les performances ont été confirmées grâce au cas-test de l’interface elliptique perturbée.

2.5.1 Interface elliptique perturbée

Considérons tout d’abord le cas d’une interface dont la forme initiale est une ellipse. La fonction ϕ est dans ce cas être définie de la façon suivante :

$$\phi(x, y) = \sqrt{ \frac{(x-x_C)^2}{A^2} + \frac{(y-y_C)^2}{B^2} } - R^2$$

(2.5.41)
ou (x_C, y_C) sont les coordonnées du centre de l’ellipse, $A = 4$, $B = 2$ et $R = 1$. Dans notre cas le domaine de calcul est le carré $\Omega = [0, 10] \times [0, 10]$ et donc $x_C = 5$, $y_C = 5$.

Ensuite, nous perturbons les lignes de niveau de l’ellipse par un signal en multipliant l’équation (2.5.41) par une fonction perturbatrice $f(x, y)$. Seule la ligne de niveau 0, c’est-à-dire l’interface, n’est pas perturbée et garde sa forme initiale. Elle est représentée par une ligne bleue épaisse sur la Fig. 2.8.

Fig. 2.8 – Évolution des lignes de niveau dans le cas test de l’interface elliptique perturbée ($\phi \in [-2; 2]$ par pas de 0.2) lorsque l’algorithme de réinitialisation est appliqué. N est le nombre d’itérations de l’algorithme de réinitialisation.
À l’état initial, les lignes de niveau sont définies par :

\[\phi(x, y) = f(x, y) \left(\sqrt{\frac{(x - xc)^2}{A^2} + \frac{(y - yc)^2}{B^2}} - R^2 \right) \]

(2.5.42)

avec \(f(x, y) = \epsilon + (x - x_0)^2 + (y - y_0)^2 \)

(2.5.43)

où \(\epsilon = 0.1 \), \(x_0 = 1.5 \) et \(y_0 = 3 \).

Nous ne réalisons qu’un pas de temps physique pendant lequel nous recalculons la distance entre toutes les lignes de niveau. Ainsi, ce cas-test permet d’évaluer les performances de l’algorithme de réinitialisation.

Le résultat de la simulation pour un maillage \(200 \times 200 \) et pour \(\Delta x = 0.25 \Delta x \) est représenté sur la Fig. 2.8 où \(N \) est le nombre d’itérations de l’algorithme de réinitialisation.

Nous observons que l’interface conserve sa forme et sa position et que toutes les lignes de niveau se repositionnent correctement au fur et à mesure que l’onde numérique se propage des deux côtés de l’interface (Fig. 2.5). Cet exemple illustre bien le fonctionnement et l’efficacité de l’algorithme de réinitialisation.

2.5.2 Serpentin

Le cas-test du serpentin permet de quantifier les performances d’une méthode de suivi d’interface lorsque nous observons la déformation d’un cercle qui est transporté par un écoulement cisailé. Ainsi, l’interface s’étire jusqu’à former une structure longue et très fine.

Nous considérons un domaine de calcul carré \(\Omega = [0, 1] \times [0, 1] \). L’interface circulaire de rayon \(R = 0.15 \), centrée au point \((0.5, 0.75) \), est placée dans un champ de vitesse stationnaire rotationnel (Fig. 2.9) défini par le potentiel des vitesses suivant :

\[\psi = \frac{1}{\pi} \sin^2(\pi x) \sin^2(\pi y) \]

(2.5.44)

\[
\begin{align*}
\frac{\partial \psi}{\partial y} &= u = 0 \\
\frac{\partial \psi}{\partial x} &= v = 0
\end{align*}
\]

(2.5.45)

L’interface circulaire placée dans un champ de vitesse rotationnel subit des déformations. Au bout du temps physique \(t = 3 \) s, elle s’est déformée en un serpentin dont la solution analytique est présentée sur la Fig. 2.13 (a) [62].
Dans la suite de cette section, nous avons choisi de présenter les résultats de notre étude de manière chronologique, c’est-à-dire tels que nous les avons obtenus au fur et à mesure de notre progression. Ceci nous permet de rendre compte des améliorations successives apportées à notre outil de simulation, au regard des objectifs de conservation de la masse et de la précision de la méthode Level-Set.

Afin d’évaluer la précision de la méthode Level-Set en fonction des schémas numériques utilisés, nous avons simulé le "retour" du serpentin dans sa position initiale.

Fig. 2.9 – Cas-test du serpentin : profil initial et champ de vitesse imposé.

Fig. 2.10 – Profil à $t = 3\, s$ et champ de vitesse imposé pour le retour du serpentin.
2.5 Exemples de suivi d’interface

Autrement dit, nous considérons les résultats de simulation obtenus au bout de \(t = 3 \) s avec le champ de vitesse défini selon (2.5.45) et nous inversons le signe des composantes de la vitesse \(u \) et \(v \) (Fig. 2.10). Au temps \(t = 6 \) s, le serpentin doit théoriquement être revenu dans sa position initiale, c’est-à-dire un cercle de rayon \(R = 0.15 \), centré sur le point \((0.5, 0.75)\) (Fig. 2.9). La comparaison entre les états initial et final (Figs. 2.12, 2.15 et 2.19) nous permet d’évaluer la précision de la méthode en fonction des schémas numériques utilisés.

2.5.2.1 Influence du schéma de discrétisation en temps

Tous d’abord, nous avons observé l’influence des schémas de discrétisation en temps de l’équation de transport sur le cas-test du serpentin. Le schéma d’Euler s’est avéré instable (Fig. 2.11) pour le nombre de CFL fixé à 0.31.

Les perturbations de l’interface que nous avons d’abord remarquées sur la Fig. 2.11 se voient davantage sur la simulation de retour du serpentin dans sa position initiale Fig. 2.12.

Ainsi, constatant les limitations du schéma d’Euler lors du test du serpentin, nous avons finalement adopté le schéma Runge-Kutta 2 qui assure une plus grande stabilité et précision des simulations.

1. Notons que dans notre cas, pour assurer la stabilité de la simulation avec le schéma d’Euler, le nombre de CFL doit être fixé à 0.125 au lieu de 0.5 pour le schéma Runge-Kutta 2.
Fig. 2.11 – Profils à $t = 3\,s$ de cas-test du serpentin sans réinitialisation sur le maillage 128×128.

Fig. 2.12 – Profils finaux de cas-test du retour du serpentin sans réinitialisation sur le maillage 128×128 pour un temps de simulation $t = 6\,s$.
2.5 Exemples de suivi d’interface

2.5.2.2 Influence du schéma de discrétisation en espace

Le schéma TVD Lax-Wendroff Superbee a tout d’abord été choisi pour la discrétisation en espace de l’équation de transport. Dans le but d’augmenter la précision des calculs, nous avons par la suite implémenté le schéma WENO5.

La comparaison entre la solution analytique et les résultats numériques est présentée sur la Fig. 2.13 (a) et (b) pour le temps de simulation \(t = 3 \) s.

![Fig. 2.13 – Profils à \(t = 3 \) s du cas-test du serpentin sur le maillage 128 x 128; (a) - la solution exacte présentée par Rider & al. [62]; (b) - la solution numérique avec le schéma TVD (en bleu) et avec le schéma WENO5 (en rouge).](image)

La première observation des résultats montre que l’interface est bien capturée grâce à la méthode Level-Set dans les conditions de maillage et de pas de temps considérées, malgré une perte de masse non négligeable.

Le problème de non-conservation de la masse est toujours présent pour la méthode Level-Set et le cas-test du serpentin illustre particulièrement bien ce phénomène.

Nous avons évalué la perte (gain) de masse au cours du temps de simulation du serpentin pour les différentes configurations de schéma de discrétisation de l’équation de transport. Les courbes exposées sur la Fig. 2.14 représentent, en pourcents, le rapport entre la surface instantanée du serpentin et sa surface initiale.

La Fig. 2.14 (a) et (b) rassemble les résultats obtenus avec les schémas RK2/WENO5 et RK2/TVD respectivement. L’utilisation du schéma TVD (Fig. 2.14 (b)) a tendance à épaissir le serpentin par rapport au schéma WENO5 (Fig. 2.14 (a)). Cet effet améliore les courbes d’évolution de la surface. En revanche, nous nous éloi-
Fig. 2.14 – Evolution dans le temps de la surface du serpentin pour les différents maillages avec la méthode Level-Set.
gnons plus de la forme du serpentin que nous souhaitons obtenir et nous perdons en précision.

En analysant les résultats numériques Fig. 2.13 (b), nous pouvons constater que le schéma WENO5 est mieux adapté à la description des structures longues et très fines. Cette conclusion semble d’autant plus vraie à la lumière des résultats numériques obtenus pour la simulation de retour du serpentin (Fig. 2.15).

![Fig. 2.15 – Profils finaux de cas-test du retour du serpentin pour le temps de simulation $t = 6 \text{s}$](image)

(a) Méthode Level-Set, RK2/TVD
(b) Méthode Level-Set, RK2/WENO5

Pour cette simulation, nous avons effectué la comparaison entre la solution numérique obtenue à $t = 6 \text{s}$ et le profil initial du cas-test du serpentin.

Ce test nous a permis d’évaluer la norme d’erreur pour toutes les combinaisons de schéma numérique. La norme discrète L^2 de l’erreur est facilement calculée grâce à l’expression (2.5.46) où ϕ^{init} est la valeur de la fonction Level-Set à l’état initial, ϕ^{fin} la valeur de la fonction Level-Set à l’état final, nx le nombre de pas d’espace dans la direction x et ny le nombre de pas d’espace dans la direction y.

$$\|e_\phi\|_{L^2} = \sqrt{\frac{1}{nx \times ny} \sum_C \left(\phi^{\text{init}}_C - \phi^{\text{fin}}_C \right)^2}$$

(2.5.46)

L’ensemble des résultats des calculs de norme d’erreur est rassemblé dans le Tab. 2.1. D’abord quelque soit le schéma numérique, nous retrouvons bien une convergence en maillage. Ensuite, nous constatons que conformément aux résultats graphiques présentés sur les Figs. 2.13 et 2.15, le schéma WENO5 en combinaison
Tab. 2.1 – Norme de l’erreur pour le cas-test du serpentin en fonction des schémas numériques utilisés.

<table>
<thead>
<tr>
<th>Maillages</th>
<th>Euler/TVD $|e_\phi|_{L^2}$</th>
<th>RK2/TVD $|e_\phi|_{L^2}$</th>
<th>Euler/WENO5 $|e_\phi|_{L^2}$</th>
<th>RK2/WENO5 $|e_\phi|_{L^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>64 × 64</td>
<td>3.05 × 10^{-2}</td>
<td>2.93 × 10^{-2}</td>
<td>2.82 × 10^{-2}</td>
<td>2.92 × 10^{-2}</td>
</tr>
<tr>
<td>128 × 128</td>
<td>2.41 × 10^{-2}</td>
<td>1.85 × 10^{-2}</td>
<td>9.98 × 10^{-3}</td>
<td>9.33 × 10^{-3}</td>
</tr>
<tr>
<td>256 × 256</td>
<td>1.13 × 10^{-2}</td>
<td>9.06 × 10^{-3}</td>
<td>instable</td>
<td>2.84 × 10^{-3}</td>
</tr>
</tbody>
</table>

Tab. 2.2 – Les taux de convergence associés à la discrétisation temps/espace.

avec le schéma Runge-Kutta 2 constitue le meilleur choix pour la discrétisation espace/temps de l’équation de transport.

De plus, l’ordre de convergence en maillage α que nous avons présenté dans le Tab. 2.2 confirme la supériorité du schéma WENO5 sur le schéma TVD pour la méthode Level-Set.

Néanmoins, nous tenons à préciser que le choix du schéma TVD reste dans certains cas un bon compromis entre le coût en temps de calcul et la précision. Par exemple, pour les cas test du serpentin le schéma TVD est en moyenne 1,5 fois plus rapide que le schéma WENO5.

2.5.2.3 Influence de l’algorithme de réinitialisation sur le cas-test du serpentin

Nous analysons ici l’influence de l’algorithme de réinitialisation en comparant le résultat de simulation du serpentin avec et sans utilisation de l’algorithme.

Lorsque l’algorithme de réinitialisation est activé, nous réalisons 2 itérations à la fin de chaque pas de temps physique de transport de l’interface. Cela permet de réinitialiser les lignes de niveau proches de l’interface (Fig. 2.16).

En observant les résultats présentés sur la Fig. 2.16 et, plus loin, ceux de la Fig. 2.17, nous constatons que l’utilisation de l’algorithme de réinitialisation ré-
2.5 Exemples de suivi d’interface

Fig. 2.16 – Position des lignes de niveau du serpentin à \(t = 3s \); (a) sans algorithme de réinitialisation; (b) avec algorithme de réinitialisation.

duit considérablement la perte de masse par rapport aux résultats que nous avions obtenus avec la méthode Level-Set sans réinitialisation, illustrés sur la Fig. 2.13 (b).

L’influence de la réinitialisation est telle que c’est même l’effet inverse qui se produit. Au lieu d’une perte de masse, nous avons engendré un gain de masse. Cette fois, la queue et la tête du serpentin ne sont pas correctement capturées car l’algorithme de réinitialisation tend à épaisir artificiellement le serpentin.

De la même manière que dans la section 2.5.2.2, nous avons évalué la perte/gain de masse au cours du temps pour la méthode Level-Set avec l’algorithme de réinitialisation. Les courbes obtenues sont présentées sur la Fig. 2.18.

L’effet d’épaississement dû à la réinitialisation, observé sur la Fig. 2.17 (b), se confirme par le gain de masse observé sur la Fig. 2.18 (a) et (b). Cet effet est d’autant plus flagrant lorsque nous utilisons le schéma TVD pour la discrétisation spatiale de l’équation de transport, comme l’illustre la Fig. 2.18 (b). Dans ce cas, nous nous éloignons encore plus de la solution exacte du serpentin.

Comme précédemment, nous avons effectué le test du retour du serpentin pour évaluer la norme d’erreur lorsque l’algorithme de réinitialisation est appliqué. Les résultats numériques sont présentés sur la Fig. 2.19.

L’ensemble des résultats des calculs de norme d’erreur est rassemblé dans le Tab. 2.3.

Les erreurs obtenues dans le Tab. 2.3 montrent que l’algorithme de réinitialisation nuit à la qualité de l’ensemble des résultats en terme de précision si nous
Fig. 2.17 – Profil du serpentin à $t = 3s$; (a) solution exacte ; (b) la solution numérique de la méthode LS avec l’algorithme de réinitialisation sur le maillage 128×128 avec le schéma TVD (en bleu) et avec le schéma WENO5 (en rouge).

<table>
<thead>
<tr>
<th>Maillages</th>
<th>$| e_{\phi} |_{L^2}$</th>
<th>$| e_{\phi} |_{L^2}$</th>
<th>$| e_{\phi} |_{L^2}$</th>
<th>$| e_{\phi} |_{L^2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>64×64</td>
<td>$1.14 \cdot 10^{-1}$</td>
<td>$1.38 \cdot 10^{-1}$</td>
<td>$1.07 \cdot 10^{-1}$</td>
<td>$1.04 \cdot 10^{-1}$</td>
</tr>
<tr>
<td>128×128</td>
<td>$5.83 \cdot 10^{-2}$</td>
<td>$5.81 \cdot 10^{-2}$</td>
<td>instable</td>
<td>$4.81 \cdot 10^{-2}$</td>
</tr>
<tr>
<td>256×256</td>
<td>instable</td>
<td>$4.32 \cdot 10^{-2}$</td>
<td>instable</td>
<td>$4.09 \cdot 10^{-2}$</td>
</tr>
</tbody>
</table>

Tab. 2.3 – Norme de l’erreur pour le cas-test du serpentin en fonction des schémas numériques utilisés, avec l’algorithme de réinitialisation.

<table>
<thead>
<tr>
<th>Maillages</th>
<th>Euler/TVD</th>
<th>RK2/TVD</th>
<th>Euler/WENO5</th>
<th>RK2/WENO5</th>
</tr>
</thead>
<tbody>
<tr>
<td>64×64</td>
<td>α</td>
<td>0.84</td>
<td>α</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Tab. 2.4 – Les taux de convergence associés à la discrétisation temps/espace, avec l’algorithme de réinitialisation.
Fig. 2.18 – Evolution dans le temps de la surface du serpentin pour les différents maillages avec la méthode Level-Set en utilisant l’algorithme de réinitialisation.
La méthode Level-Set

Fig. 2.19 – Profils finals de cas-test du retour du serpentin avec l'algorithme de réinitialisation pour le temps de simulation $t = 6 \text{s}$.

les comparons aux erreurs obtenues avec la méthode Level-Set seule. Il semble que l'utilisation de l'algorithme de réinitialisation permet d'améliorer les propriétés de la fonction Level-Set par le calcul de la courbure au détriment de la précision. Dans ce dernier cas les erreurs obtenues ne sont liées qu'aux erreurs de diffusion et s'accumulent au cours de temps.

Comparativement aux résultats obtenus pour la méthode Level-Set seule (Tab. 2.2), l'application de l'algorithme de réinitialisation diminue l'ordre de convergence en maillage pour le schéma WENO5 (Tab. 2.4).

2.6 Conclusion sur la méthode de suivi d’interface

La méthode Level-Set et l'algorithme de réinitialisation ont été validés avec succès sur plusieurs cas-tests académiques. Cela nous a permis de voir les avantages, inconvénients et limitations de cette méthode.

Le problème de conservation de la masse reste majeur pour cette méthode. Pour pallier ce défaut, nous avons implémenté des schémas numériques d’ordres élevés en temps et en espace, dont l’efficacité a été observée dans la section 2.5. Néanmoins, cette difficulté reste d’actualité surtout pour les écoulements dans lesquels de petites inclusions restent isolées dans la phase continue et ont tendance à disparaître petit à petit durant la simulation lorsque le maillage n’est pas assez raffiné.
L'utilisation de l'algorithme de réinitialisation donne souvent l'impression d'améliorer la conservation de la masse de la méthode Level-Set. Pourtant ce problème de conservation n'est lié qu'aux erreurs de discrétisation, qui s'accumulent d'avantage en cas d'application de la réinitialisation puisqu'il faut résoudre l'équation d'Hamilton-Jacobi en plus de l'équation de transport.

L'algorithme de réinitialisation est bien nécessaire mais son rôle est d'assurer la propriété de distance algébrique pour le calcul des propriétés géométriques. Ceci a été démontré à plusieurs reprises [16], [38], [57].

Afin de résoudre le problème de conservation de la masse, plusieurs solutions sont envisageables. Nous en avons déjà exposées quelques-unes dans la section 1.2.3 (par exemple, la méthode CLSVOF ou Level-Set conservative) mais on peut également citer la méthode de correction de la masse [69] ainsi que la méthode de réinitialisation sous contrainte [11], [72].

Méthode de correction de la masse

La méthode de correction de la masse combine la procédure de réinitialisation classique avec un algorithme de correction. Elle a été introduite par Smolianski [69] qui prend pour principe de départ que l'erreur sur la conservation de la masse après un pas de temps, est très faible si l'on a pris soin d'utiliser des schémas de discrétisation de l'équation de transport suffisamment précis. La perte de masse n'affecterait donc la solution du problème que par accumulation des erreurs numériques durant la simulation. Sur la base de ce raisonnement Smolianski propose de corriger la solution (la masse) après chaque pas de temps grâce à la propriété distance de la méthode Level-Set.

À la fin de l'étape de réinitialisation, nous nous retrouvons avec la fonction distance signée Φ définie près de l'interface et la forme de l'interface naturellement obtenue dans le cadre de résolution du problème Fig. 2.20.

Par conséquent, la méthode de correction présentée par Smolianski [69] consiste à remplacer la ligne de niveau zéro (l'interface) existante par une ligne de niveau voisine de sorte que la conservation de la masse soit assurée. Cette opération peut être effectuée en déplaçant l'interface d'une valeur constante C_Φ ($|C_\Phi|$ représente la distance entre la nouvelle et l'ancienne position de l'interface). Pour définir cette constante il suffit de calculer la surface exacte S_{excte} occupée par le fluide dispersée et la surface S occupant Ω_2, obtenue après la réinitialisation.
La méthode Level-Set

Fig. 2.20 – Correction de la méthode Level-Set avec l’ancienne et la nouvelle position de l’interface (image issue de Smolianski [69]).

\[\phi^{\text{NEW}} = \phi + C_\phi \]

où \(L(\Gamma) \) est la longueur de l’interface \(\Gamma \) obtenue après la réinitialisation.

Les avantages considérables de cette méthode sont sa simplicité et son efficacité. A contrario, elle a tendance à induire une erreur sur la localisation de l’interface.

Cette méthode pourrait être une solution pertinente au problème de conservation de la masse.

Méthode de réinitialisation sous contrainte

La méthode de réinitialisation sous contrainte [11], [72], quand à elle, consiste à rajouter dans l’équation de réinitialisation (2.4.27) une contrainte spécifiquement destinée à assurer la conservation de la masse.

En théorie, l’équation de réinitialisation de la méthode Level-Set assure la conservation de la masse car l’interface ne change pas de position durant la résolution de l’équation (2.6.48).

\[
\begin{cases}
\frac{\partial \Phi}{\partial \tau} = \text{sign}(\phi)(1 - \|\nabla \Phi\|) = L(\phi, \Phi) \\
\Phi(x, \tau = 0) = \phi(x, t)
\end{cases}
\tag{2.6.48}
\]

D’un point de vue numérique cependant, cette propriété n’est pas respectée. Afin d’assurer la conservation de la masse, Sussman et al. [72] ont introduit une contrainte \(f(\phi) \) en remplaçant la première équation dans (2.6.48) par l’expression (2.6.49).
2.6 Conclusion sur la méthode de suivi d’interface

\[\frac{\partial \Phi}{\partial \tau} = L(\phi, \Phi) + \lambda f(\phi) \]

(2.6.49)

où \(\lambda \) est une fonction de \(\tau \). Elle peut être facilement déterminée en utilisant la propriété de la conservation du volume \(\partial_t \int_{\Omega} H_e(\Phi) = 0 \), où \(H_e \) est une fonction de Heaviside régularisée.

\[\frac{\partial}{\partial \tau} \int_{\Omega} H_e(\Phi) = \int_{\Omega} H_e'(\Phi) \frac{\partial \Phi}{\partial \tau} \approx \int_{\Omega} H_e'(\phi) \frac{\partial \Phi}{\partial \tau} = \int_{\Omega} H_e'(\phi) (L(\phi, \Phi) + \lambda f(\phi)) = 0 \]

(2.6.50)

\[\Rightarrow \quad \lambda = -\frac{\int_{\Omega} H_e'(\phi)L(\phi, \Phi)}{\int_{\Omega} H_e'(\phi)f(\phi)} \]

(2.6.51)

La fonction \(f \) est choisie de façon suivante,

\[f(\phi) = H_e'(\phi) |\nabla \phi| \]

(2.6.52)

Avec une telle définition de la méthode de réinitialisation sous contrainte, les lignes de niveau sont corrigées uniquement dans un environnement proche de l’interface et la fonction distance dans le reste du domaine n’est pas perturbée. Si l’interface ne change pas de position, donc \(\lambda = 0 \), nous revenons à la résolution du système (2.6.48). En tenant compte du fait que la masse doit être conservée de la même manière dans chaque volume de contrôle \(\Omega_{ij} \) du domaine \(\Omega \), nous pouvons écrire l’algorithme final de réinitialisation sous contrainte :

\[\begin{align*}
\frac{\partial \Phi}{\partial \tau} &= L(\phi, \Phi) + \lambda_{ij} f(\phi) \\
\lambda_{ij} &= -\frac{\int_{\Omega_{ij}} H_e'(\phi)L(\phi, \Phi)}{\int_{\Omega_{ij}} H_e'(\phi)f(\phi)}
\end{align*} \]

(2.6.53)

Bien que les résultats présentés par Sussman & al. [72] montrent une amélioration significative de la conservation de la masse, l’utilisation de cette méthode n’a pas rencontré un franc succès [16], [77].

Une nouvelle version de cette méthode a alors été récemment présentée par Wang & al. [91]. Les résultats de ce travail sont similaires aux résultats de la méthode CLSVOF de Sussman & al. [73]. Le grand avantage de l’approche de Wang & al. par rapport à la méthode CLSVOF est qu’elle est conservative en masse sans ap-
plication d’algorithmes de reconstruction complexes. De plus, l’accès aux propriétés géométriques est direct et la mise en œuvre de la méthode en 3D ne demande pas d’efforts supplémentaires.

Cette dernière méthode de Wang & al. [91] n’a pas été implémentée dans le cadre de notre travail mais représente une perspective séduisante pour en enrichir les résultats.
Formulation et résolution numérique
des équations de Navier-Stokes

Sommaire

3.1 Présentation du modèle d’un écoulement diphasique à
phase dispersée 62
 3.1.1 Modèle d’écoulement diphasique 62
 3.1.2 Conditions de saut à l’interface 64

3.2 Traitement des conditions de saut 66
 3.2.1 Méthode CSF (Continuum Surface Force) 66
 3.2.2 Méthode Ghost Fluid 68

3.3 Résolution numérique des équations de Navier-Stokes 69
 3.3.1 Algorithme de décomposition d’opérateurs 70
 3.3.2 Résolution du sous-problème d’advection-diffusion 71
 3.3.3 Résolution du sous-problème de Stokes 72

3.4 Maillage et discrétisation 75
 3.4.1 Discrétisation en temps 75
 3.4.2 Discrétisation en espace 77
 3.4.3 Condition de stabilité numérique 87

3.5 Outil numérique 88

3.6 Tests de validation d’un écoulement diphasique 90
 3.6.1 Goutte statique (test de Laplace) 90
 3.6.2 Écoulement de Poiseuille diphasique 94
 3.6.3 Bulle ascendante 97
Dans le chapitre 2 de ce manuscrit nous avons retracé en détail la procédure de choix de la méthode pour suivre une interface mobile Γ dans un écoulement diphasique. Le mouvement de l’interface dans un champ de vitesse donné \mathbf{u} était alors décrit par l’équation de transport (2.2.2).

Ce champ de vitesse \mathbf{u} devient à présent une inconnue et symbolise la vitesse de l’écoulement. Ainsi, le chapitre 3 est dédiée à la présentation du modèle que nous avons adopté pour la simulation des écoulements diphasiques à phase dispersée.

3.1 Présentation du modèle d’un écoulement diphasique à phase dispersée

Pour formuler le modèle mathématique approprié à notre problématique, nous commençons par la spécification des hypothèses physiques utilisées. Nous considérons un écoulement laminaire et instationnaire de deux fluides immiscibles.

Pour l’écoulement que nous souhaitons étudier, les deux fluides sont supposés visqueux et Newtoniens (le tenseur des contraintes dépend linéairement du taux de déformation). De plus, les fluides sont considérés comme incompressibles et isothermes, négligeant ainsi les variations de masse volumique et de viscosité dues aux changements de pression ou de température.

Par ailleurs, en supposant les deux fluides homogènes, nous estimons que la viscosité et la masse volumique sont constantes dans chaque fluide.

Le fait de considérer les deux fluides comme immiscibles nous amène au concept d’interface. La zone de séparation entre les fluides représente une interface à travers laquelle les propriétés physiques des deux fluides changent brutalement. Pour traiter ces variations des propriétés physiques dans la zone de séparation, il est nécessaire d’implémenter des conditions de saut.

Dans notre étude, nous prenons en compte la tension de surface entre les deux fluides qui est considérée comme constante. Nous supposons l’interface imperméable, c’est-à-dire que les transferts de masse à travers l’interface sont négligés.

3.1.1 Modèle d’écoulement diphasique

Nous considérons un espace de calcul Ω, union de deux sous-espaces quelconques Ω_1 et Ω_2 tel que Γ est l’interface de séparation entre Ω_1 et Ω_2 (FIG. 3.1).

Chacun des sous-espaces est associé à un fluide dont les propriétés physiques varient d’un espace à l’autre. On note ainsi la masse volumique $\rho_i = \rho_1$ dans Ω_1 et $\rho_i = \rho_2$ dans Ω_2. De façon analogique la viscosité dynamique μ_i prend les valeurs μ_1 et μ_2. Les fluides étant supposés immiscibles, les propriétés physiques de ρ_1, ρ_2, μ_1 et μ_2 sont constantes dans leurs propres domaines.
3.1 Présentation du modèle d’un écoulement diphasique à phase dispersée

Fig. 3.1 – Schéma d’un écoulement diphasique où Γ est l’interface de séparation de deux sous-espaces quelconques Ω_1 et Ω_2 telle que $\Omega = \Omega_1 \cup \Omega_2 \cup \Gamma$.

ou μ_2 dans les sous-espaces Ω_1 et Ω_2 respectivement.

En tenant compte des hypothèses physiques exposées ci-dessus nous pouvons décrire un écoulement composé de deux phases par un modèle monophasique (modèle à un fluide [86]). Les équations de Navier-Stokes d’un écoulement incompressible associées à un tel modèle s’écrivent de la façon suivante :

$$
\rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla)\mathbf{u} \right) - \nabla \cdot (2\mu \mathbf{D}) + \nabla p = \mathbf{f} \tag{3.1.1}
$$

$$
\nabla \cdot \mathbf{u} = 0 \tag{3.1.2}
$$

où \mathbf{u} et p sont respectivement les champs de vitesse et de pression, définis sur Ω et \mathbf{D} est le tenseur de taux de déformation défini par l’équation (3.1.3).

$$
\mathbf{D} = \frac{1}{2} (\nabla \mathbf{u} + \nabla \mathbf{u}^T) \tag{3.1.3}
$$

Le terme \mathbf{f} de l’équation (3.1.1) représente les forces volumiques que nous détaillerons par la suite. Notons seulement que dans notre cas d’étude d’un écoulement diphasique, le terme \mathbf{f} est représenté par deux types de forces volumiques : la pesanteur et les forces capillaires.

La fonction Level-Set représentant l’interface est définie de façon suivante :

$$
\begin{align*}
\phi(x, t) &= 0, \quad x \in \Gamma \quad \text{sur l’interface} \\
\phi(x, t) &< 0, \quad x \in \Omega_1 \quad \text{dans le fluide 1} \\
\phi(x, t) &> 0, \quad x \in \Omega_2 \quad \text{dans le fluide 2}
\end{align*} \tag{3.1.4}
$$
Le modèle à un fluide consiste à trouver le couple \((u, p)\) défini sur \(\Omega\), solution des équations de Navier-Stokes incompressible (3.1.1), (3.1.2) et ensuite à utiliser la vitesse \(u\) pour suivre l’interface dans son évolution en résolvant (3.1.5).

\[
\frac{\partial \phi}{\partial t} + u \cdot \nabla \phi = 0 \tag{3.1.5}
\]

Les propriétés physiques d’un tel écoulement sont définies de manière générale en utilisant la relation (3.1.6).

\[
\rho = f (\rho_1, \rho_2, \phi) \\
\mu = f (\mu_1, \mu_2, \phi) \tag{3.1.6}
\]

En tenant compte du caractère discontinu des variables à travers l’interface, il est nécessaire d’ajouter les conditions aux limites sur l’interface \(\Gamma\) à la formulation du problème (3.1.1) et (3.1.2).

Nous donnons plus de précision sur le traitement des variations des propriétés physiques dans la zone de séparation de deux fluides dans la section 3.2.

3.1.2 Conditions de saut à l’interface

Les équations (3.1.1) et (3.1.2) déterminent le mouvement d’un fluide. Pour tenir compte de l’interface introduite entre les deux fluides nous avons besoin de compléter notre modèle avec des conditions supplémentaires : les conditions de saut à l’interface.

Chaque fluide possède sa propre énergie associée aux liaisons moléculaires. Lorsque l’on introduit une interface entre deux fluides, l’équilibre est rompu dans la direction de l’interface. Ce phénomène de rupture donne lieu à une force de surface qui assure l’équilibre énergétique de cohésion moléculaire. Cette force de surface porte plusieurs noms : la force capillaire, la tension de surface ou encore la tension superficielle [16].

Pour l’interface en mouvement l’expression des conditions de saut est donnée de la façon suivante :

\[
n \cdot [T] \cdot n = \sigma \kappa \tag{3.1.7}
\]

\[
t \cdot [T] \cdot n = 0 \tag{3.1.8}
\]

où \(n\) est le vecteur normal à l’interface, \(t\) est le vecteur tangent, \(\kappa\) est la courbure associée, \(\sigma\) est le coefficient de tension de surface dont la valeur est considérée comme constante et enfin \([T] = T_1 - T_2\) exprime la condition de saut à la traversée de l’interface. \(T\) est le tenseur des contraintes qui se compose de deux parties :
3.1 Présentation du modèle d’un écoulement diphasique à phase dispersée

- La contrainte associée à la pression (\(-pI]\) où \(I\) est une matrice identité);
- La contrainte associée aux forces visqueuses (\(\tau = 2\mu D\))

L’équation (3.1.7) donne une relation sur le saut de la contrainte normale et l’équation (3.1.8) représente le saut de la contrainte tangentielle.

En détaillant le tenseur de contrainte \(T\) nous obtenons :

\[
\mathbf{n} \cdot [-pI + 2\mu D] \cdot \mathbf{n} = \sigma \kappa \tag{3.1.9}
\]

\[
t \cdot [\mu D] \cdot \mathbf{n} = 0 \tag{3.1.10}
\]

Dans le cas de notre étude, nous tenons compte de l’hypothèse que les contraintes de viscosité interdisent le glissement d’un fluide par rapport à l’autre. Nous pouvons donc réécrire la condition de contrainte tangentielle (3.1.10) de la façon suivante :

\[
[u] = 0 \tag{3.1.11}
\]

Si l’interface est au repos, l’expression des conditions de saut change de forme puisqu’il ne faut plus tenir compte de l’action des forces visqueuses. Grâce à la loi de Laplace nous obtenons une relation importante sur la contribution des forces capillaires sur le saut de pression à la traversée d’une interface entre deux fluides immiscibles au repos :

\[
p_1 - p_2 = \sigma \left(\frac{1}{R_1} + \frac{1}{R_2} \right) = \sigma \kappa \tag{3.1.12}
\]

où \(R_1\) et \(R_2\) sont les rayons de courbure principaux en un point considéré sur la surface (FIG. 3.2).

![FIG. 3.2 – Géométrie de la surface de séparation entre deux fluides (1) et (2) permettant de définir les rayons de courbure principaux, d’après Couderc [16].](image)

Les conditions de saut exposées ci-dessus donnent une relation de dépendance
entre les solutions obtenues dans chaque sous espace Ω_1 et Ω_2 (FIG. 3.1). Par exemple, la solution obtenue dans le sous espace Ω_1 permet, grâce aux conditions de saut, d’obtenir les conditions aux limites pour la solution du problème dans le sous espace Ω_2 et réciproquement.

Nous avons fait le choix de déterminer le mouvement du fluide dans l’ensemble du domaine Ω (et non pas pour chaque fluide de manière indépendante). Les conditions de saut se rajoutent donc à la formulation d’un écoulement diphasique donnée par les équations (3.1.1), (3.1.2) et (3.1.5).

Dans la suite de ce manuscrit nous exposons les méthodes de traitement numérique possibles pour la prise en compte des conditions de saut que nous venons de présenter ainsi que la résolution numérique des équations de Navier-Stokes.

3.2 Traitement des conditions de saut

Comme nous l’avons vu précédemment, l’interface localisée par la méthode appropriée est le lieu de discontinuités. Les conditions de saut ainsi que les propriétés physiques nécessitent l’implémentation d’un outil numérique capable de raccorder les solutions des équations aux dérivées partielles à l’interface entre deux sous-espaces. La méthode CSF et la méthode Ghost-Fluid sont deux techniques souvent utilisées pour le traitement des discontinuités dans le cadre de la modélisation des écoulements diphasiques.

3.2.1 Méthode CSF (Continuum Surface Force)

La méthode numérique la plus courante pour le traitement des termes discontinus est la méthode CSF (Continuum Surface Force) introduite par Brackbill & al. [6] (même si l’idée d’une formulation volumique régularisée appartient à Peskin [59]). Cette méthode a ensuite été employée par de nombreux auteurs tels que Chang & al. [11], Sussman & al. [74] et Unverdi & al. [82] pour n’en citer que quelques uns. La méthode CSF représente une technique où l’interface est épaissie artificiellement afin de régulariser les variables discontinues à l’interface.

Nous présentons ici la méthode CSF directement appliquée aux équations de Navier-Stokes dans le cadre de la formulation globale, quand les forces de tension de surface et les forces de la gravité sont introduites sous la forme du terme source f vu précédemment.

Tous d’abord, l’équation de conservation de mouvement (3.1.1) est réécrite sous sa forme intégrale :
3.2 Traitement des conditions de saut

\[\int_{\Omega} \rho(\phi) \frac{\partial \mathbf{u}}{\partial t} \, d\Omega = - \int_{\Omega} \nabla p \, d\Omega + \int_{\Omega} \nabla \cdot (2\mu(\phi) \mathbf{D}) \, d\Omega + \oint_{\Gamma} \sigma \kappa \mathbf{n} \, dS + \int_{\Omega} \rho(\phi) \mathbf{g} \, d\Omega \]
\quad (3.2.13)

où le terme \(\oint_{\Gamma} \sigma \kappa \mathbf{n} \, dS \) représente le terme source des forces de tension de surface, le terme \(\int_{\Omega} \rho(\phi) \mathbf{g} \, d\Omega \) est le terme source des forces de gravité.

En appliquant l’équation (2.2.4) au terme source des forces de tension de surface on obtient alors :

\[\oint_{\Gamma} \sigma \kappa \mathbf{n} \, dS = \oint_{\Gamma} \sigma \kappa(\phi) \frac{\nabla \phi}{|\nabla \phi|} \, dS \]
\quad (3.2.14)

Grâce à la propriété mathématique de la fonction Dirac suivante,

\[\int \sigma(x) \delta(f(x)) \, dx = \frac{\sigma(0)}{|f'(0)|} \]
\quad (3.2.15)

appliquée à la fonction couleur \(\phi(x) \),

\[\int_{\Omega} \sigma(x) \delta(\phi(x)) \, d\Omega = \oint_{\Gamma} \frac{\sigma(0)}{|\nabla \phi(0)|} \, dS \]
\quad (3.2.16)

on montre que l’intégrale sur la surface peut être approchée par une intégrale sur le volume suivant la formulation (3.2.17) :

\[\oint_{\Gamma} \sigma \kappa(\phi) \frac{\nabla \phi}{|\nabla \phi|} \, dS = \int_{\Omega} \sigma \kappa(\phi) \nabla \phi \delta(\phi) \, d\Omega \]
\quad (3.2.17)

Nous pouvons donc récrire l’équation (3.2.13) sous une forme différentielle en la complétant par l’équation (3.2.17) pour le calcul des forces de tension de surface :

\[\rho(\phi) \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \nabla) \mathbf{u} \right) = -\nabla p + \nabla \cdot (2\mu(\phi) \mathbf{D}) + \sigma \kappa(\phi) \delta(\phi) \nabla \phi + \rho(\phi) \mathbf{g} \]
\quad (3.2.18)

Les propriétés physiques \(\rho(\phi) \) et \(\mu(\phi) \) sont exprimées en fonction de la fonction Level-Set \(\phi \) :

\[\rho(\phi) = \rho_1 + (\rho_2 - \rho_1) H(\phi) \]
\quad (3.2.19)

\[\mu(\phi) = \mu_1 + (\mu_2 - \mu_1) H(\phi) \]
\quad (3.2.20)

où la fonction de Heaviside est définie par :
En pratique, pendant l’implémentation de l’algorithme CSF il est nécessaire d’effectuer la régularisation de l’ensemble des quantités présentant un saut à l’interface en utilisant une forme régularisée de la fonction Heaviside $H_\varepsilon(\phi)$ et de la fonction Dirac $\delta_\varepsilon(\phi)$. Les formulations les plus souvent rencontrées dans la littérature, notamment dans [65], [74], sont les suivantes :

$$H_\varepsilon(\phi) = \begin{cases} 0 & \phi < 0 \\ 1/2 & \phi = 0 \\ 1 & \phi > 0 \end{cases}$$

(3.2.21)

et pour la fonction Dirac :

$$\delta_\varepsilon(\phi) = \frac{dH_\varepsilon(\phi)}{d\phi} = \begin{cases} 0 & |\phi| > \varepsilon \\ \frac{1}{2\varepsilon} \left(1 + \cos \left(\frac{\pi\phi}{\varepsilon}\right)\right) & |\phi| \leq \varepsilon \end{cases}$$

(3.2.22)

où ε est le paramètre de lissage qui définit l’épaisseur fictive de l’interface. Cette épaisseur vaut environ 2ε. Selon [74], ε doit être choisi en respectant l’expression suivante :

$$\varepsilon = \alpha \Delta x$$

(3.2.24)

où $1 \leq \alpha \leq 2$ et en général $\alpha = \frac{3}{2}$.

Les avantages principaux de la méthode CSF sont sa robustesse et sa facilité d’implémentation. Cependant, le fait de considérer une épaisseur fictive de l’interface supérieure à la réalité physique peut conduire à un manque de précision de la solution obtenue si l’on souhaite étudier des écoulements dont l’interface réelle est très fine (par exemple gaz/liquide).

3.2.2 Méthode Ghost Fluid

Il existe une autre méthode qui permet de coupler les valeurs représentant les sauts à travers l’interface, sans qu’il soit nécessaire d’appliquer l’algorithme de régularisation des discontinuïtés (CSF). C’est une méthode numérique plus générale qui respecte le caractère discontinu de certaines variables physiques ([25], [40]). La méthode Ghost Fluid est capable de traiter directement les conditions de saut tout
en respectant la physique proche de l'interface.

L'utilisation de cette méthode est très importante pour le traitement de l'interface type liquide-gaz. Cela s'explique par le fait que l'épaisseur réelle d'une interface liquide-gaz est de l'ordre d'une dizaine de nanomètres au maximum. Il est donc préférable de ne pas introduire une épaisseur fictive comme pour la méthode CSF qui rend plus diffuse la position du front.

Dans le cadre de nos études des écoulements liquide-liquide nous avons implémenté la méthode CSF. Nous nous sommes basés sur l'idée que les discontinuités à travers l'interface liquide-liquide sont moins sévères que dans le cas liquide-gaz. C'est pourquoi nous n'exposons pas ici la méthode Ghost Fluid en détail.

Plus d'informations concernant la méthode Ghost Fluid sont disponibles dans les sources suivantes : Fedkiw & al. [25] - le principe de base de la méthode, Kang & al. [40] - l'utilisation de la méthode pour le calcul d'écoulement diphasique incompressible, Couderc [16], Tanguy [77] - les travaux de thèse.

3.3 Résolution numérique des équations de Navier-Stokes

Grâce à la méthode Level-Set exposée et validée dans le chapitre 2 nous disposons d'outils efficaces pour capturer une interface mobile dans le cadre des écoulements diphasiques. Cependant, pour modéliser un écoulement de deux fluides, il est nécessaire de développer un outil numérique pour la résolution des équations de Navier-Stokes. Ce solveur doit être suffisamment performant pour décrire correctement les champs de vitesse u et de pression p. Le choix de ce solveur est important puisque l'interface est transportée grâce au champ de vitesse obtenu après la résolution des équations de Navier-Stokes.

À l'heure actuelle, il existe un nombre conséquent de techniques pour la résolution de ce type de problème. Parmi les différentes procédures de résolution numérique de système d'équations de Navier-Stokes (3.1.1), (3.1.2), nous pouvons citer les méthodes de décomposition d'opérateurs (méthodes de projection), les méthodes spectrales et les méthodes de pénalisation (Lagrangien augmenté [9], [26]).

Les méthodes de décomposition d'opérateurs ont toujours été très populaires pour la simulation numérique des écoulements incompressibles. Pour être plus précis, les méthodes de projection introduites par Chorin [13] et Temam [78], [79] et utilisées depuis plus de quarante ans, peuvent être vues comme des méthodes de décomposition d'opérateurs.

Dans cette partie nous détaillerons la méthode de décomposition d’opérateurs...
présentée par Glowinski [27] pour la résolution numérique des équations de Navier-Stokes (3.1.1), (3.1.2) que nous avons utilisée dans notre étude.

3.3.1 Algorithme de décomposition d’opérateurs

La résolution du système d’équations de Navier-Stokes que nous avons adoptée nécessite de découpler les variables vitesse et pression dans l’équation de conservation de la quantité de mouvement (3.1.1). En même temps, cette équation doit être résolue en tenant compte de la condition d’incompressibilité (3.1.2).

Comme nous l’avons mentionné plus haut, à l’heure actuelle, il existe un nombre conséquent de techniques pour la résolution de ce problème.

Nous avons donné notre préférence à la méthode de décomposition d’opérateurs [27]. Le principe de cette méthode consiste à décomposer des opérateurs différentiels en somme d’opérateurs simples (sous-problèmes) du problème général. Cette décomposition rend la procédure de résolution plus simple car nous pouvons traiter chaque sous-problème de façon séparée et appliquer une méthode de résolution adaptée à chacun d’entre eux.

Tout d’abord, rappelons que le système d’équations que l’on souhaite résoudre s’écrit de la façon suivante :

\[
\begin{align*}
\rho(\phi)\left(\frac{\partial u}{\partial t} + (u \cdot \nabla)u\right) - \nabla \cdot (2\mu(\phi)D) + \nabla p = \rho(\phi)g \\
\nabla \cdot u = 0 \quad \text{dans } \Omega \\
[u] = 0, \quad [-pI + 2\mu D] \cdot n = \sigma_k n \quad \text{sur } \Gamma
\end{align*}
\tag{3.3.25}
\]

Le schéma que nous avons appliqué pour la décomposition d’opérateurs porte le nom de schéma à pas fractionnaire de Marchuk-Yanenko (voir [45], [46], [93]). En appliquant ce schéma de décomposition au système (3.3.25) nous obtenons deux sous-problèmes, le problème d’advection-diffusion (3.3.26) et le problème de Stokes dégénéré (3.3.27).

La première étape consiste donc à résoudre le problème d’advection-diffusion :

\[
\begin{align*}
\rho(\phi^n)\left(\frac{u^* - u^n}{\Delta t} + (u^n \cdot \nabla)u^n\right) - \nabla \cdot (2\mu(\phi^n)D^*) = \rho(\phi^n)g \\
[u^*] = 0, \quad [2\mu D^*] \cdot n = \sigma_k n \quad \text{sur } \Gamma
\end{align*}
\tag{3.3.26}
\]

La deuxième étape est la résolution du problème de Stokes dégénéré :
3.3 Résolution numérique des équations de Navier-Stokes

La stratégie générale de la méthode de décomposition d’opérateurs consiste à résoudre les étapes (3.3.26) et (3.3.27) successivement pour chaque intervalle de temps \([t_n; t_{n+1}]\). Le pas de temps global \(\Delta t = t_{n+1} - t_n\) peut être subdivisé en pas de temps plus petits dans chacun des sous-problèmes.

En tenant compte de la méthode CSF choisie pour le traitement des conditions de saut (voir la section 3.2.1), le système (3.3.26) se réécrit sous la forme suivante :

\[
\rho(\phi^n) \left(\frac{u^{n+1} - u^*}{\Delta t} + \nabla p^{n+1} \right) = \nabla \cdot (2\mu(\phi^n)D^*) \Rightarrow u^{n+1}, p^{n+1} \quad (3.3.27)
\]

L’ordre d’erreur que nous commettons en utilisant le schéma de Marchuk-Yanenko pour la décomposition d’opérateurs (comme pour les méthodes de projection classiques) est en \(O(\Delta t/Re)\) [58]. Néanmoins, ce schéma est connu pour ses propriétés de stabilité et de robustesse ([27], [41]). Il existe quelques techniques pour augmenter l’ordre de précision des méthodes de projection, comme par exemple l’utilisation d’une forme rotationnelle de la méthode de projection (dans le cas d’un écoulement à masse volumique et viscosité constantes [48], masse volumique et viscosité variables [1], [8]). Toutes ces méthodes sont étudiées en détail par Guermond & al. [28].

Pour plus de détails sur l’algorithme de décomposition d’opérateurs ou sur les autres méthodes de résolution des équations de Navier-Stokes, nous vous invitons à prendre connaissance de [27].

3.3.2 Résolution du sous-problème d’advection-diffusion

Le sous-problème d’advection-diffusion (3.3.26) sous forme matricielle s’écrit de la façon suivante :

\[
Au^* = B \quad (3.3.29)
\]

où \(A\) est la matrice des coefficients de discrétisation du terme instationnaire et du terme visqueux, \(B\) est le second membre (advection, les termes sources, etc.) et \(u^*\)
est le vecteur-solution du problème d’advection-diffusion.

\[u^* = A^{-1} B \]

(3.3.30)

Pour calculer \(u^* \) il existe un nombre important de méthodes de résolution de système linéaire ou d’inversion de matrice (comme les méthodes directes, itératives ou multigrilles). Nous avons utilisé la méthode de gradient conjugué avec un préconditionneur de type Jacobi.

Afin de calculer la vitesse \(u^* \) de l’étape de préïcation précisément, il est nécessaire d’appliquer des schémas de discrétisation en espace adaptés au terme d’advection \((u^n \nabla)u^n\) ainsi qu’au terme de diffusion \(\nabla \cdot (2\mu(\phi^n)D^*)\). Le choix et l’implémentation de ces schémas sont présentés dans la section 3.4.

3.3.3 Résolution du sous-problème de Stokes

Afin de résoudre le sous-problème de Stokes dégénéré (3.3.27), nous avons implémenté l’algorithme d’Uzawa préconditionné ainsi que la méthode du "Laplacien de pression" présentés ci-dessous.

3.3.3.1 Algorithme d’Uzawa préconditionné

Le problème de Stokes (3.3.27) discrétisé peut s’écrire sous la forme matricielle suivante :

\[
\begin{pmatrix}
A & B^T \\
B & 0
\end{pmatrix}
\begin{pmatrix}
u \\
p
\end{pmatrix} =
\begin{pmatrix}
f \\
g
\end{pmatrix}
\]

(3.3.31)

où \(A \) est une matrice carrée \(N \times N \) symétrique définie positive (représentant le terme instationnaire), \(B \) une matrice \(M \times N \) (gradient de pression), \(B^T \) une matrice \(N \times M \) (divergence de la vitesse), \((u,f) \in \mathbb{R}^N \) et \((p,g) \in \mathbb{R}^M \).

Le système matriciel (3.3.31) est résolu grâce à la méthode itérative d’Uzawa/gradient conjugué adaptée pour la résolution du problème de Stokes incompressible, dont l’algorithme est le suivant :

- Initialisation : \(i = 0 \)
- Calcul de \(q^{(0)} = f - B^T p^{(0)} \)
- Résolution de \(Au^{(0)} = q \)
- Calcul de \(r^{(0)} = g - Bu^{(0)} \)
- Préconditionneur
 - Résolution de \(r^{(0)} = D s^{(0)} \), où \(D \) est la matrice du laplacien de la pression.
3.3 Résolution numérique des équations de Navier-Stokes

- Calcul de la direction de descente \(\mathbf{w}^{(0)} \):

\[
\mathbf{z}^{(0)} = \mathbf{s}^{(0)} \quad \mathbf{w}^{(0)} = \mathbf{z}^{(0)}
\]

- Processus itératif : \(i \geq 1 \)
 - Calcul de \(\mathbf{q}^{(i)} = \mathbf{B}^T \mathbf{w}^{(i-1)} \)
 - Résolution de \(\mathbf{A}^{(i)} = \mathbf{q}^{(i)}, \mathbf{x}^{(i)} = \mathbf{B} \mathbf{t}^{(i)} \)
 - Calcul de \(\alpha = \frac{\mathbf{r}^{(i-1)} \mathbf{z}^{(i-1)}}{\mathbf{w}^{(i-1)} \mathbf{x}^{(i)}} \)
 - Calcul de \(\mathbf{p}^{(i)}, \mathbf{r}^{(i)} \) et \(\mathbf{u}^{(i)} \)

\[
\mathbf{p}^{(i)} = \mathbf{p}^{(i-1)} - \alpha \mathbf{w}^{(i-1)} \\
\mathbf{r}^{(i)} = \mathbf{r}^{(i-1)} - \alpha \mathbf{x}^{(i)} \\
\mathbf{u}^{(i)} = \mathbf{u}^{(i-1)} + \alpha \mathbf{t}^{(i)}
\]

- Préconditionneur
 - Résolution de \(\mathbf{x}^{(i)} = \mathbf{D} \mathbf{s}^{(i)} \)
 - Calcul de \(\mathbf{z}^{(i)} : \)

\[
\mathbf{z}^{(i)} = -\alpha \mathbf{s}^{(i)}
\]

- Calcul de \(\beta = \frac{\mathbf{r}^{(i)} \mathbf{z}^{(i)}}{\mathbf{r}^{(i-1)} \mathbf{z}^{(i-1)}} \)
 - Mise à jour \(\mathbf{w}^{(i)} = \mathbf{z}^{(i)} + \beta \mathbf{w}^{(i-1)} \)
 - Convergence si \(|\mathbf{r}^{(i)}| \leq \epsilon \) où \(\epsilon = 1.e^{-14} \) est le critère de convergence.

Le principal avantage de l’utilisation de la méthode Uzawa préconditionnée est sa haute précision numérique. De plus, la propriété d’incompressibilité de l’écoulement \((\nabla \cdot \mathbf{u} = 0) \) est toujours assurée grâce au processus itératif de cette méthode. Cependant, ce même processus itératif rend l’algorithme plus couteux en temps de calcul et peut limiter son utilisation.

3.3.3.2 Algorithme du "Laplacien de pression"

Pour la résolution du sous-problème (3.3.27) nous pouvons également utiliser la méthode du "Laplacien de pression" qui consiste à obtenir le champ de la pression \(p^{n+1} \) en résolvant une équation de Poisson aux coefficients variables (3.3.34) et ensuite corriger le champ de vitesse \(\mathbf{u}^{n+1} \) pour le rendre à divergence nulle.

Cette méthode est assez facile à mettre en œuvre et très peu couteuse en temps de calcul (algorithme de résolution directe). Cependant, bien que la propriété de la vitesse à divergence nulle soit démontrée pour la forme continue, elle ne l’est pas toujours pour la forme discrète.
Pour obtenir l’équation de Poisson nous suivons la procédure suivante :

– Prendre la divergence de l’équation de Stokes :

\[
\nabla \cdot \left[\frac{u^{n+1} - u^*}{\Delta t} + \frac{1}{\rho(\phi)} \nabla p^{n+1} \right] = 0 \quad (3.3.32)
\]

\[\iff \frac{1}{\Delta t} (\nabla \cdot u^{n+1} - \nabla \cdot u^*) + \nabla \cdot \left(\frac{1}{\rho(\phi)} \nabla p^{n+1} \right) = 0 \quad (3.3.33)\]

– En tenant compte de l’incompressibilité du fluide \(\nabla \cdot u^{n+1} = 0 \), nous obtenons l’équation de Poisson aux coefficients variables :

\[
\nabla \cdot \left(\frac{1}{\rho(\phi)} \nabla p^{n+1} \right) = \frac{1}{\Delta t} \nabla \cdot u^* \quad (3.3.34)
\]

où \(u^* \) est la vitesse de prédiction obtenue à l’étape de résolution du problème d’advection-diffusion et où la masse volumique \(\rho(\phi) \) est calculée en utilisant l’équation (3.2.19).

L’équation (3.3.34) présentée sous forme matricielle (3.3.35) a été résolue grâce à la méthode de gradient conjugué avec un préconditionneur multigrille (Hypre).

\[
D p = g_b \quad (3.3.35)
\]

où \(D \) représente la matrice du laplacien de pression, \(g_b \) est le vecteur de divergence de la vitesse de prédiction et \(p \) le vecteur de pression que nous cherchons à calculer.

– En connaissant alors la pression, nous pouvons procéder à l’étape de correction du champ de vitesse pour le rendre à divergence nulle en utilisant l’équation (3.3.36).

\[
u^{n+1} = u^* - \frac{\Delta t}{\rho(\phi)} \nabla p^{n+1} \quad (3.3.36)
\]

La plupart des calculs présentés dans ce manuscrit sont effectués en utilisant cette méthode de résolution pour le problème de Stokes dégénéré afin d’alléger le temps de simulation.

L’algorithme général de résolution numérique des équations de Navier-Stokes étant présenté dans cette partie du manuscrit nous pouvons procéder à la description des aspects de discrétisation en temps et en espace.
3.4 Maillage et discrétisation

Comme dans le chapitre 2 pour la discrétisation de l’équation de transport, nous considérons un maillage cartésien et uniforme pour faciliter l’implémentation des schémas numériques. Nous adoptons une approche Volumes-Finis sur une grille décalée de type MAC [30].

Ce choix de maillage permet d’avoir une disposition décalée des variables vitesse et pression, illustrées sur la Fig. 3.3, et d’écrire ainsi les dérivées premières avec des schémas d’une précision d’ordre 2.

![Maillage décalé de type MAC. Volumes de contrôle utilisés.](image)

Les volumes de contrôle $\Omega_p, \Omega_\phi, \Omega_u, \text{ et } \Omega_v$ sont associés à chaque variable $p, \phi, u,\text{ et } v$ respectivement.

3.4.1 Discrétisation en temps

En présentant l’algorithme de décomposition d’opérateurs nous avons mentionné la façon dont les équations de Navier-Stokes sont résolues en temps. Dans cette partie du manuscrit plus de détails seront exposés sur la discrétisation temporelle du problème (3.1.1), (3.1.2), (3.1.5).

Nous avons utilisé le schéma d’Euler d’ordre 1 pour l’évolution en temps des équations de Navier-Stokes. Au temps courant t^n nous disposons de la vitesse u^n et de la fonction Level-Set ϕ^n. Grâce à la méthode de décomposition d’opérateurs exposée dans la section précédente nous obtenons le couple (u^{n+1}, p^{n+1}) solution des équation de Navier-Stokes pour chaque intervalle de temps $[t^n; t^{n+1}]$. L’interface transportée dans le champ de vitesse u^{n+1} est ensuite mise à jour à l’aide de la solution de l’équation de transport ϕ^{n+1}. Nous pouvons alors écrire la stratégie générale...
de discrétisation temporelle de la façon suivante :

\[
\rho(\phi^n) \left(\frac{\mathbf{u}^* - \mathbf{u}^n}{\Delta t} + (\mathbf{u}^n \cdot \nabla)\mathbf{u}^n \right) - \nabla \cdot (2 \mu(\phi^n) \mathbf{D}^*) = \rho(\phi^n) \mathbf{g} + \sigma \kappa(\phi^n) \delta(\phi^n) \nabla \phi^n
\]

\[
\mathbf{u}^* - \frac{\Delta t}{\rho(\phi^n)} \nabla \cdot (2 \mu(\phi^n) \mathbf{D}^*) = \mathbf{u}^n + \Delta t \left[- (\mathbf{u}^n \cdot \nabla)\mathbf{u}^n + \mathbf{g} + \frac{\sigma \kappa(\phi^n) \delta(\phi^n) \nabla \phi^n}{\rho(\phi^n)} \right]
\]
(3.4.37)

\[
\begin{cases}
\rho(\phi^n) \frac{\mathbf{u}^{n+1} - \mathbf{u}^n}{\Delta t} + \nabla p^{n+1} = 0 \\
\nabla \cdot \mathbf{u}^{n+1} = 0
\end{cases}
\]
(3.4.38)

\[
\frac{\phi^{n+1} - \phi^n}{\Delta t} + \mathbf{u}^{n+1} \cdot \nabla \phi^n = 0
\]
(3.4.39)

Le pas de temps global \(\Delta t = t^{n+1} - t^n \) peut être subdivisé en pas de temps plus petits dans chacune des étapes exposées ci-dessus. Notons que le terme diffusif est totalement implicite dans notre cas.

Il est important de noter que les schémas de discrétisation en temps d’ordre plus élevé peuvent éventuellement être implémentés. Leur performance à déjà été démontrée dans le cas de la discrétisation de l’équation de transport avec le schéma de Runge-Kutta d’ordre 2. Cependant, un tel choix appliqué aux équations de Navier-Stokes serait trop coûteux en temps de calcul. En effet, l’opération d’inversion des matrices (matrice instationnaire + matrice visqueuse, matrice du Laplacien de pression) assez couteuse en soi serait solliciter plusieurs fois durant un pas de temps \(\Delta t \).

Le schéma Adams-Bashforth [48] contourne cet inconvénient car il ne s’applique qu’au terme convectif à l’étape d’advection-diffusion (3.4.37). Selon le schéma Adams-Bashforth, l’équation (3.4.37) se réécrit sous la forme suivante :

\[
\mathbf{u}^* = \mathbf{u}^n - \frac{\Delta t}{2} \left[3 (\mathbf{u}^n \cdot \nabla)\mathbf{u}^n + (\mathbf{u}^{n-1} \cdot \nabla)\mathbf{u}^{n-1} \right] + \\
\frac{\Delta t}{\rho(\phi^n)} \left(\nabla \cdot (2 \mu(\phi^n) \mathbf{D}^n) + \sigma \kappa(\phi^n) \delta(\phi^n) \nabla \phi^n \right) + \Delta t \mathbf{g}
\]
(3.4.40)

Le terme de diffusion est totalement explicite dans le cas de l’équation (3.4.40) mais nous pouvons le rendre implicite (ou semi-implicite) selon notre choix d’im-
3.4 Maillage et discrétisation

plémentation du schéma d’Adams-Bashforth. La mise en œuvre de ce schéma est rapide et ne pose pas de problème particulier.

Dans certaines situations observées par Tanguy [77], ce schéma se montre presque équivalent aux schémas de Runge-Kutta d’ordre 2 et 3 en termes de précision. Dans notre étude, le schéma d’Adams-Bashforth a été employé sur quelques cas de simulations diphasiques mais des tests supplémentaires comparatifs devront être effectués par la suite afin de valider les performances de ce schéma.

Pour les simulations exposées dans la suite de ce manuscrit nous avons utilisé le schéma d’Euler pour la discrétisation en temps des équations de Navier-Stokes (3.4.37), (3.4.38). En ce qui concerne la discrétisation temporelle de l’équation de transport (3.4.39), elle a été effectuée à l’aide du schéma de Runge-Kutta 2.

3.4.2 Discrétisation en espace

Dans cette partie nous détaillons les aspects de discrétisation en espace pour les équations de Navier-Stokes.

Comme nous l’avons mentionné auparavant nous avons utilisé le maillage cartésien uniforme sur lequel les variables ont été disposées de façon décalée (maillage de type MAC). À chaque variable nous avons associé un volume de contrôle comme cela est illustré sur la Fig. 3.3.

Pour des raisons de simplicité nous n’exposons ici les schémas numériques de discrétisation spatiale qu’en deux dimensions. La mise en œuvre dans la troisième direction est identique.

3.4.2.1 Discrétisation du terme convectif

Pour discrétiser la partie convective des équation de Navier-Stokes \((\mathbf{u} \cdot \nabla) \mathbf{u}\) nous avons utilisé la schéma TVD présenté auparavant pour la discrétisation spatiale de l’équation de transport.

Nous utilisons la formulation conservative du terme convectif exactement de la même façon que nous l’avons fait pour l’équation de transport, sauf que ce n’est plus la fonction Level-Set \(\phi\) qui est advectée mais la vitesse \(\mathbf{u}\). Cette fois le terme convectif est assemblé selon les deux composantes de la vitesse \(u\) et \(v\), sur les volumes de contrôle \(\Omega_u\) et \(\Omega_v\) respectivement. Le volume de contrôle \(\Omega_u\) associé à la composante \(u\) est présenté sur la Fig. 3.4 avec les points impliqués dans la discrétisation utilisant le schéma TVD.

En tenant compte de la divergence nulle de la vitesse le terme convectif \((\mathbf{u} \cdot \nabla) \mathbf{u}\) se réécrit sous la forme conservative \(\nabla \cdot (\mathbf{u}^2)\).
Nous présentons ici le calcul des flux à travers chaque face de volume de contrôle Ω_u en sachant que les flux pour Ω_v et Ω_w peuvent être calculer, de façon analogue. Notons que cette formulation est adaptée au pas d'espace variable.

\[
\int_{\Omega_u} \nabla \cdot F \, d\Omega_u = \int_{S_u} F \cdot n \, dS_u = (F_u^n - F_u^s) \, \Delta y_C + (F_u^w - F_u^e) \, \Delta x_C \tag{3.4.42}
\]

où

\[
\begin{align*}
F_u^n &= 0.5 \left[u_n (S_{1n} + S_{2n}) - |u_n| (S_{1n} - S_{2n}) \right] \\
F_u^s &= 0.5 \left[u_s (S_{1s} + S_{2s}) - |u_s| (S_{1s} - S_{2s}) \right] \\
F_u^w &= 0.5 \left[u_w (S_{1w} + S_{2w}) - |u_w| (S_{1w} - S_{2w}) \right] \\
F_u^e &= 0.5 \left[u_e (S_{1e} + S_{2e}) - |u_e| (S_{1e} - S_{2e}) \right]
\end{align*}
\]

et

\[
\begin{align*}
u_n &= 0.5 \left(u_N + u_C \right) \\
u_s &= 0.5 \left(u_C + u_S \right) \\
u_w &= 0.5 \left(u_{sw} + u_{nw} \right) \\
u_e &= 0.5 \left(u_{se} + u_{ne} \right)
\end{align*}
\]
3.4 Maillage et discrétisation

avec

\[
\begin{align*}
S_{1n} &= u_N - \frac{x_N - x_n}{x_N - x_N} \varphi_{nn} (u_{NN} - u_N) \\
S_{2n} &= u_C + \frac{x_n - x_C}{x_N - x_C} \varphi_n (u_N - u_C) \\
S_{1s} &= u_C - \frac{x_C - x_s}{x_N - x_C} \varphi_n (u_N - u_C) \\
S_{2s} &= u_S + \frac{x_s - x_S}{x_C - x_S} \varphi_s (u_C - u_S) \\
S_{1w} &= u_W - \frac{y_W - y_w}{y_{WW} - x_W} \varphi_{ww} (u_{WW} - u_W) \\
S_{2w} &= u_C + \frac{y_W - y_C}{y_{WW} - y_C} \varphi_w (u_W - u_C) \\
S_{1e} &= u_C - \frac{y_C - y_e}{y_{WW} - y_C} \varphi_w (u_W - u_C) \\
S_{2e} &= u_E + \frac{y_e - y_E}{y_C - y_E} \varphi_e (u_C - u_E)
\end{align*}
\]

où \(\varphi \) est le limiteur de pente Superbee. Par exemple, sur la face \(n \), \(\varphi \) est défini de la façon suivante :

\[
\varphi_n = \varphi \left(\xi_n^k \right) = \max \left(0, \min \left(1, 2 \xi_n^k \right) \right) \min \left(2, \xi_n^k \right)
\text{ avec } \xi_n^k = \frac{u^k_n - u^k_S}{u^k_N - u^k_C}
\]

3.4.2.2 Discrétisation du terme visqueux

Le terme visqueux a été assemblé dans le système linéaire (3.3.29) de façon implicite. De manière générale :

\[
(\nabla \cdot (2\mu D))_C = 2 \left(\begin{pmatrix}
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \mu \\
\frac{\partial}{\partial y} & \frac{\partial}{\partial x} & \frac{\partial}{\partial y} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial x}
\end{pmatrix} \begin{pmatrix}
\frac{\partial u}{\partial x} + \mu \frac{\partial v}{\partial x} \\
\frac{\partial u}{\partial y} + \frac{\partial v}{\partial y} \\
\frac{\partial u}{\partial y} + \mu \frac{\partial v}{\partial y}
\end{pmatrix} \right) \Omega_{uc}
\]

(3.4.46)

En utilisant les points de maillage présentés sur la Fig. 3.5 (a) nécessaires pour la discrétisation en volumes finis, les coefficients de la matrice pour la première
composante de la vitesse \(u \) sont calculés de la façon suivante :

\[
\int_{\Omega_{ac}} \left(\frac{\partial}{\partial x} \left(\mu \frac{\partial u}{\partial x} \right) + \frac{\partial}{\partial y} \left(\frac{\mu}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right) \right) d\Omega_{ac}
\]

\[
\int_{S_{ac}} \mu \frac{\partial u}{\partial x} \cdot n \Delta y_C dS_{uc} + \int_{S_{ac}} \frac{\mu}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \cdot n \Delta x_C dS_{uc}
\]

\[
= \left[\mu_n \left(\frac{\partial u}{\partial x} \right)_n - \mu_s \left(\frac{\partial u}{\partial x} \right)_s \right] \Delta y_C
\]

\[
+ \left[\frac{\mu_w}{2} \left(\frac{\partial u}{\partial y} \right)_w - \frac{\mu_e}{2} \left(\frac{\partial u}{\partial y} \right)e + \frac{\mu_w}{2} \left(\frac{\partial v}{\partial x} \right)_w - \frac{\mu_e}{2} \left(\frac{\partial v}{\partial x} \right)e \right] \Delta x_C
\]

\[
= \mu_n \frac{\Delta y_C}{\Delta x_n} (u_N - u_C) - \mu_s \frac{\Delta y_C}{\Delta x_s} (u_C - u_S)
\]

\[
+ \frac{\mu_w}{2} \frac{\Delta x_C}{\Delta y_w} (u_W - u_C) - \frac{\mu_e}{2} \frac{\Delta x_C}{\Delta y_e} (u_C - u_E)
\]

\[
+ \frac{\mu_w}{2} \frac{\Delta x_C}{\Delta x_w} (v_{nw} - v_{sw}) - \frac{\mu_e}{2} \frac{\Delta x_C}{\Delta x_e} (v_{ne} - v_{se})
\]

(3.4.47)
3.4 Maillage et discrétisation

Finalement, pour la composante u de la vitesse :

$$
\begin{align*}
 a_N &= 2\mu_n \frac{\Delta y_C}{\Delta x_n} \\
 a_S &= 2\mu_s \frac{\Delta x_S}{\Delta x_C} \\
 a_W &= \mu_w \frac{\Delta y_w}{\Delta x_C} \\
 a_E &= \mu_e \frac{\Delta x_e}{\Delta y_e}
\end{align*}
$$

$$
\begin{align*}
 a_{nw} &= \mu_w \frac{\Delta x_w}{\Delta x_C} \\
 a_{sw} &= -\mu_w \frac{\Delta x_w}{\Delta x_C} \\
 a_{ne} &= -\mu_e \frac{\Delta x_e}{\Delta x_C} \\
 a_{se} &= -\mu_e \frac{\Delta x_e}{\Delta x_C}
\end{align*}
$$

(3.4.48)

$$
\begin{align*}
 a_C &= -a_N - a_S - a_W - a_E
\end{align*}
$$

(3.4.49)

où les valeurs de la viscosité μ_n et μ_s sont accessibles directement (Fig. 3.5 (a)) alors que les valeurs μ_w et μ_e sont calculées en utilisant l’équation (3.4.50) pour un maillage à pas constant.

$$
\begin{align*}
 \mu_w &= \frac{1}{4} (\mu_n + \mu_s + \mu_w + \mu_n w) \\
 \mu_e &= \frac{1}{4} (\mu_n + \mu_s + \mu_e + \mu_n e)
\end{align*}
$$

(3.4.50)

Les coefficients de la matrice pour la deuxième composante de la vitesse v sont calculés en utilisant les noeuds illustrés sur Fig. 3.5 (b).

$$
\begin{align*}
 \int_{\Omega_{vc}} \left(\frac{\partial}{\partial y} \left(\mu \frac{\partial v}{\partial y} \right) + \frac{\partial}{\partial x} \left(\frac{\mu}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \right) \right) d\Omega_{vc} \\
 &= \int_{S_{vc}} \mu \frac{\partial v}{\partial y} \cdot \mathbf{n} \Delta x_C dS_{vc} + \int_{S_{vc}} \frac{\mu}{2} \left(\frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \right) \cdot \mathbf{n} \Delta y_C dS_{vc} \\
 &= \left[\frac{\partial v}{\partial y} \right] w - \mu_e \left[\frac{\partial v}{\partial y} \right] e \Delta x_C \\
 &+ \left[\frac{\partial u}{\partial y} \right] n - \frac{\mu_s}{2} \left[\frac{\partial u}{\partial y} \right] s + \frac{\mu_n}{2} \left(\frac{\partial v}{\partial x} \right) n - \frac{\mu_e}{2} \left(\frac{\partial v}{\partial x} \right) s \Delta y_C \\
 &= \mu_w \frac{\Delta x_C}{\Delta y_w} (v_w - v_C) - \mu_e \frac{\Delta x_C}{\Delta y_e} (v_C - v_E) \\
 &+ \frac{\mu_n}{2} \frac{\Delta y_C}{\Delta y_n} (u_{nw} - u_{ne}) - \frac{\mu_s}{2} \frac{\Delta y_C}{\Delta y_s} (u_{sw} - u_{se}) \\
 &+ \frac{\mu_n}{2} \frac{\Delta y_C}{\Delta x_n} (v_N - v_C) - \frac{\mu_s}{2} \frac{\Delta y_C}{\Delta x_s} (v_C - v_S)
\end{align*}
$$

(3.4.51)
Finalement, pour la composante \(v \) de la vitesse :

\[
\begin{align*}
\begin{array}{c|c}
\text{Termes} & \text{Equations} \\
\hline
a_N = \mu_n \frac{\Delta y_C}{\Delta x_n} & a_{nw} = \mu_n \frac{\Delta y_C}{\Delta y_n} \\
a_s = \mu_s \frac{\Delta y_C}{\Delta x_s} & a_{ns} = -\mu_n \frac{\Delta y_n}{\Delta y_C} \\
a_w = 2\mu_n \frac{\Delta y_w}{\Delta x_C} & a_{sw} = -\mu_s \frac{\Delta y_s}{\Delta y_C} \\
a_e = 2\mu_e \frac{\Delta y_e}{\Delta y_C} & a_{se} = \mu_s \frac{\Delta y_C}{\Delta y_e} \\
\end{array}
\end{align*}
\] (3.4.52)

\[
\begin{align*}
a_C = -a_N - a_s - a_w - a_e
\end{align*}
\] (3.4.53)

En ce qui concerne les valeurs de la viscosité \(\mu_w \) et \(\mu_e \), elles sont accessibles directement (Fig. 3.5(b)). Les valeurs \(\mu_n \) et \(\mu_s \) sont calculées en utilisant l’équation (3.4.54) pour un maillage à pas constant.

\[
\begin{align*}
\mu_n &= \frac{1}{4} (\mu_w + \mu_e + \mu_{Nw} + \mu_{Ne}) \\
\mu_s &= \frac{1}{4} (\mu_w + \mu_e + \mu_{Sw} + \mu_{Se})
\end{align*}
\] (3.4.54)

Pour la discrétisation dans la troisième direction selon la composante \(w \) de la vitesse nous avons appliqué la même démarche.

3.4.2.3 Discrétisation du terme de tension de surface

Le terme de tension de surface est assemblé de façon explicite dans le système linéaire (3.3.29) et représente donc une partie du second membre \(g_b \).

Comme nous l’avons démontré auparavant la force de tension de surface représentée par l’intégrale sur la surface peut être approchée par une intégrale sur le volume. Dans ce cas l’intégration du terme de tension de surface se poursuit de la façon suivante :

1. Selon le volume de contrôle \(\Omega_u \) :

\[
\begin{align*}
\int_{\Omega_u} \left(\sigma \kappa(\phi) \delta(\phi) \frac{\partial \phi}{\partial x} \right) \, d\Omega_u &= \sigma \int_{\Omega_u} \left(\kappa(\phi) \frac{\partial H(\phi)}{\partial x} \right) \, d\Omega_u \\
&= \sigma \int_{S_u} \kappa(\phi) H(\phi) \cdot n_x \, dS_u \\
&= \sigma \left[\kappa_n H_n - \kappa_s H_s \right] \Delta y_C
\end{align*}
\] (3.4.55)
2. Selon le volume de contrôle Ω_v :

$$
\int_{\Omega_v} \left(\sigma \kappa (\phi) \delta (\phi) \frac{\partial \phi}{\partial y} \right) \, d\Omega_v = \sigma \int_{\Omega_v} \left(\kappa (\phi) \frac{\partial H(\phi)}{\partial y} \right) \, d\Omega_v
$$

$$
= \sigma \int_{S_v} \kappa (\phi) H(\phi) \cdot n_y \, dS_v
$$

$$
= \sigma \left[\kappa_w H_w - \kappa_c H_c \right] \Delta x_c
$$

(3.4.56)

Le vecteur de la tension de surface est assemblé grâce aux expressions (3.4.55) et (3.4.56).

3.4.2.3.1 Calcul des propriétés géométriques de l’interface

Pour pouvoir assembler correctement le terme de tension de surface en utilisant la méthode CSF nous avons besoin de calculer la normale n et la courbure κ de l’interface. Pour cela nous utilisons directement la fonction Level-Set ϕ :

$$
n = \frac{\nabla \phi}{\| \nabla \phi \|}
$$

(3.4.57)

Le vecteur de la normale est calculé sur les mêmes points de discrétisation que le champ de vitesse.

La première composante n_x est discrétisée comme schématisé sur la Fig. 3.6 (a).

$$
n_x = \frac{\phi_x'}{\sqrt{(\phi_x')^2 + (\phi_y')^2}}
$$

(3.4.58)
84 Formulation et résolution numérique des équations de Navier-Stokes

avec
\[
\begin{align*}
\phi'_x &= \frac{\phi_n - \phi_s}{\Delta x_c} \\
\phi'_y &= \frac{\phi_w - \phi_e}{\Delta y_c}
\end{align*}
\]\n
ou
\[
\begin{align*}
\phi_w &= \frac{\phi_n + \phi_e + \phi_{nw} + \phi_{sw}}{4} \\
\phi_e &= \frac{\phi_n + \phi_s + \phi_{ne} + \phi_{se}}{4}
\end{align*}
\]
(3.4.59)

La discrétisation de la deuxième composante \(n_y\) est présentée sur la Fig. 3.6 (b).

\[
n_y = \frac{\phi'_y}{\sqrt{(\phi'_x)^2 + (\phi'_y)^2}}
\]
(3.4.60)

avec
\[
\begin{align*}
\phi'_y &= \frac{\phi_w - \phi_e}{\Delta y_c} \\
\phi'_x &= \frac{\phi_n - \phi_s}{\Delta x_c}
\end{align*}
\]\n
ou
\[
\begin{align*}
\phi_n &= \frac{\phi_w + \phi_e + \phi_{wn} + \phi_{en}}{4} \\
\phi_s &= \frac{\phi_w + \phi_e + \phi_{ws} + \phi_{es}}{4}
\end{align*}
\]
(3.4.61)

La courbure \(\kappa\) est calculée au centre des cellules (Fig. 3.7). Il existe plusieurs façons de la calculer. Cependant, nous ne présentons ici que celles qui ont été implémentées et testées dans le cadre de cette thèse.

1. Une première solution consiste à calculer la courbure en utilisant le vecteur de la normale. Les dérivées sont évaluées grâce aux équations (3.4.63).

\[
\kappa = \nabla \cdot \mathbf{n} = \frac{\partial n_x}{\partial x} + \frac{\partial n_y}{\partial y}
\]
(3.4.62)

avec
\[
\frac{\partial n_x}{\partial x} = \frac{n_x^n - n_x^s}{\Delta x_c} \quad \text{et} \quad \frac{\partial n_y}{\partial y} = \frac{n_y^w - n_y^e}{\Delta y_c}
\]
(3.4.63)

Fig. 3.7 – Discrétisation de la courbure \(\kappa\).
2. La courbure peut également être calculée en utilisant le vecteur de la normale selon (3.4.62) mais cette fois les dérivées sont mises en œuvre grâce à la technique de Brackbill & al. [6] et Sussman & al. [74] pour un maillage à pas constant. Le calcul des dérivées fait intervenir plusieurs points comme cela est schématisé sur la Fig. 3.8.

Fig. 3.8 – Disposition des noeuds (composantes de la normale) autour du volume de contrôle de la courbure κ (a) pour le calcul de \(\frac{\partial n_x}{\partial x} \), (b) pour le calcul de \(\frac{\partial n_y}{\partial y} \), d’après [6] et [74].

\[
\frac{\partial n_x}{\partial x} = \frac{n_{nw}^x - n_{se}^x}{2\Delta x_c} - \frac{n_{nw}^x + n_{ne}^x - n_{se}^x n_{sw}^x}{2}\, (3.4.64)
\]

\[
\frac{\partial n_y}{\partial y} = \frac{n_{nw}^y - n_{se}^y}{2\Delta y_c} - \frac{n_{nw}^y + n_{ne}^y - n_{se}^y n_{sw}^y}{2}\, (3.4.65)
\]

où

\[
\begin{align*}
n_{nw}^x &= \frac{(n_x^n + n_x^{NW})}{2} \\
n_{sw}^x &= \frac{(n_x^n + n_x^{SW})}{2} \\
n_{ne}^x &= \frac{(n_x^n + n_x^{NE})}{2} \\
n_{se}^x &= \frac{(n_x^n + n_x^{SE})}{2}
\end{align*}
\]

et

\[
\begin{align*}
n_{nw}^y &= \frac{(n_y^n + n_y^{NW})}{2} \\
n_{sw}^y &= \frac{(n_y^n + n_y^{SW})}{2} \\
n_{ne}^y &= \frac{(n_y^n + n_y^{NE})}{2} \\
n_{se}^y &= \frac{(n_y^n + n_y^{SE})}{2}
\end{align*}
\]

3. Enfin, une autre façon de discrétiser la courbure est d’utiliser directement la fonction Level-Set (sans utiliser la normale), auquel cas :
Formulation et résolution numérique des équations de Navier-Stokes

\[\kappa = \nabla \cdot \left(\frac{\nabla \phi}{\| \nabla \phi \|} \right) = \frac{(\phi_x')^2 \phi_{yy} - 2\phi_x'\phi_y'\phi_{xy} + (\phi_y')^2 \phi_{xx}}{\left((\phi_x')^2 + (\phi_y')^2\right)^2} \] (3.4.66)

Fig. 3.9 – Disposition des noeuds (fonction \(\phi \)) autour du volume de contrôle pour le calcul de la courbure \(\kappa \).

Une discrétisation standard centrée est employée pour chacune des dérivées de la fonction Level-Set \(\phi \).

\[
\begin{align*}
\phi_x' &= \frac{\phi_N - \phi_S}{2\Delta x} & \phi''_x &= \frac{\phi_N - 2\phi_C + \phi_S}{\Delta x^2} \\
\phi_y' &= \frac{\phi_W - \phi_E}{2\Delta y} & \phi''_y &= \frac{\phi_W - 2\phi_C + \phi_E}{\Delta y^2} \\
\phi_{xy}' &= \frac{\phi_{NW} + \phi_{SE} - \phi_{NE} - \phi_{SW}}{4\Delta x\Delta y} & \phi''_{xy} &= \frac{\phi_{NW} - \phi_{NE} + \phi_{SE} - \phi_{SW}}{\Delta x}\frac{\phi_{NW} - \phi_{SE} + \phi_{NE} - \phi_{SW}}{\Delta y} \\
\end{align*}
\] (3.4.67)

Le calcul de la courbure est très important pour la bonne prise en compte de la condition de saut en pression. Dans le test de validation d’une goutte statique (voir plus loin la section 3.6.1) nous avons illustré l’influence des trois options de calcul de la courbure sur l’erreur numérique de simulation.

Pour les simulations effectuées dans la partie d’application de ce travail (chapitre 4) nous avons utilisé la deuxième façon pour calculer la courbure.
3.4.3 Condition de stabilité numérique

La détermination d’un critère reliant le pas de temps Δt avec le pas d’espace Δx est nécessaire afin d’assurer la stabilité de notre outil de simulation. De façon générale, ce critère de stabilité dépend du terme convectif, du terme visqueux et des termes sources.

La condition de stabilité du terme convectif est exposée dans la section 2.3.2 de ce manuscrit. Étant donnée la formulation implicite du terme visqueux dans notre cas, le choix du pas de temps ne dépend pas de ce terme. En revanche, le terme capillaire est explicite et il est donc nécessaire d’introduire une relation dont le respect assure la stabilité du calcul.

La plupart des auteurs qui ont adopté une approche similaire à la notre, c’est-à-dire avec un traitement explicite de la tension de surface, utilisent la condition de stabilité introduite par Brackbill & al. [6]. Il existe également un critère de stabilité général du problème, exposé par Kang & al. [40], qui rapporté au terme de tension de surface, conduit à une relation similaire à celle de Brackbill & al. [6].

En tenant compte de l’argumentation exposée ci-dessus, le pas de temps Δt a été choisi dans notre cas en fonction du critère de stabilité du terme convectif Δt_c et du terme capillaire Δt_s ainsi que du terme Δt_ε dépendant de l’erreur ε commise par la méthode de décomposition d’opérateurs (3.4.69).

$$\Delta t \leq \min (\Delta t_c, \Delta t_s, \Delta t_\varepsilon) \quad (3.4.69)$$

La contrainte de stabilité liée au terme de convection s’exprime de la façon suivante en 2D :

$$\Delta t_c = \max \left(\frac{\Delta x}{\|u\|_{L^\infty}}, \frac{\Delta y}{\|v\|_{L^\infty}} \right) \quad (3.4.70)$$

En ce qui concerne la contrainte de stabilité du terme capillaire, étant donnée sa formulation explicite, nous avons suivi les développements de Brackbill & al. [6].

Selon les auteurs, la stabilité des calculs est assurée par la dépendance du pas de temps capillaire Δt_s avec les ondes capillaires :

$$\frac{c_\phi \Delta t_s}{\Delta x} < \frac{1}{2} \quad (3.4.71)$$

où c_ϕ représente la vitesse de phase d’une onde capillaire se propageant sur l’interface et peut être définie par l’équation (3.4.72) selon [22].
Formulation et résolution numérique des équations de Navier-Stokes

\[c_\phi = \sqrt{\frac{\sigma k}{\rho_1 + \rho_2}} \quad (3.4.72) \]

où \(\sigma \) est le coefficient de la tension de surface, \(k \) est le nombre d’onde, \(\rho_1 \) et \(\rho_2 \) sont les densités des fluides de deux côtés de l’interface. La valeur \(\frac{1}{2} \) à droite de l’équation (3.4.71) nous préserve de la situation où deux ondes capillaires entrent dans la même cellule du maillage par deux faces opposées.

Le pas de temps maximum autorisé peut être estimé en utilisant la vitesse maximale de phase d’onde. D’après (3.4.72) \(c_\phi \) atteint sa valeur maximale quand \(k_{\text{max}} = \pi/\Delta x \), ce qui correspond à la longueur d’onde minimale \(2\Delta x \). En remplaçant \(c_\phi \) dans l’équation (3.4.71) par la relation (3.4.72) quand \(k = k_{\text{max}} \), nous obtenons :

\[\Delta t_s < \sqrt{\frac{\rho_m (\Delta x)^3}{2\pi\sigma}} \quad (3.4.73) \]

où \(\rho_m = \frac{1}{2} (\rho_1 + \rho_2) \).

La relation (3.4.73) représente la condition de stabilité du terme capillaire.

La dernière contrainte que nous avons respectée dans le choix du pas de temps \(\Delta t \) pour assurer une bonne précision du calcul est définie par \(\Delta t_s \) (3.4.74) qui dépend de l’erreur \(\varepsilon \) due à l’utilisation de la méthode de décomposition d’opérateurs.

\[\Delta t_s \leq \varepsilon \Re \quad (3.4.74) \]

où \(\Re \) est le nombre de Reynolds et où nous choisissons une erreur \(\varepsilon = 10^{-7} \). Grâce à ce raisonnement, nous nous sommes assurés que l’erreur commise par la méthode de décomposition d’opérateurs n’affecte pas les résultats des simulations effectuées.

3.5 Outil numérique

La mise en œuvre d’un outil de simulation numérique directe d’un écoulement diphasique requiert une puissance de calcul importante. C’est pourquoi nous avons développé notre outil de modélisation sous la plateforme PELICANS1.

PELICANS est une plateforme logicielle développée par l’IRSN (Institut de Radioprotection et de Sureté Nucléaire). Elle permet le développement d’outils de simulation complexes et puissants grâce à une parallélisation des calculs efficace.

1. PELICANS https://gforge.irsn.fr/gf/project/pelicans/
3.5 Outil numérique

Notre travail de modélisation d'un écoulement diphasique a débuté par la prise en main du code PeliGRIFF développé à IFP Energies nouvelles sur la plateforme PELICANS pour l'étude des interactions entre fluide et particules.

Tout d'abord, nous avons modifié la structure du code, à la base orientée pour l'utilisation de la méthode des éléments finis, pour l'utilisation d'une grille décalée de type MAC avec la méthode des volumes finis. Par la suite, une version de code en deux puis en trois dimensions a été développée pour la modélisation des écoulements diphasiques.

L'outil est composé de deux parties : la première pour décrire précisément l'interface ainsi que son déplacement (partie transport) et la deuxième pour modéliser l'écoulement (partie Navier-Stokes). Ces deux parties sont couplées grâce aux propriétés physiques des deux phases considérées (viscosité et masse volumique) et aux forces de tension de surface.

La validation séparée de chaque partie du code sur les tests académiques classiques nous a permis de procéder à la validation de l'ensemble de l'outil numérique sur les cas d'écoulement diphasique (voir la section 3.6).

Nous présentons ci-dessous l'algorithme général de modélisation que nous avons mis en œuvre.

- Initialisation de l'interface grâce à la fonction Level-Set ϕ.
- Pour chaque pas de temps Δt :
 1. Calcul des propriétés géométriques de l'interface \mathbf{n} et κ (voir la section 3.4.2.3.1) ainsi que des champs de densité et de viscosité (3.2.19), (3.2.20).
 2. Résolution des équations de Navier-Stokes avec la méthode de décomposition d'opérateurs :
 - Résolution du problème d'advection-diffusion. C'est à cette étape que nous assemblons les termes source (gravité, tension de surface) ;
 - Résolution du problème de Stokes dégénéré (l'algorithme d'Uzawa pré-conditionné ou algorithme du "Laplacien de pression").
 3. Résolution de l'équation de transport de la fonction Level-Set en utilisant la vitesse calculée à l'étape 2.
 - Application de l'algorithme de réinitialisation à la fonction Level-Set.
 - Mise à jour du champ de Level-Set.
3.6 Tests de validation d’un écoulement diphasique

Dans cette partie du manuscrit nous présentons les tests académiques de validation d’un écoulement diphasique que nous avons implémentés pour évaluer les performances de notre outil numérique.

Tout d’abord nous nous concentrerons sur le cas-test d’une goutte statique (test de Laplace) pour valider la bonne prise en compte du terme de tension de surface ainsi que pour étudier le phénomène d’apparition de courants parasites autour de l’interface. Ensuite, les tests d’écoulement de Poiseuille (mono- et diphasique) ont été réalisés afin de vérifier la modélisation du terme visqueux. Nous terminerons l’étape de validation en présentant le test d’une bulle ascendante permettant d’évaluer le bon fonctionnement de l’ensemble des éléments de notre outil numérique.

3.6.1 Goutte statique (test de Laplace)

Le cas test d’une goutte (bulle) statique est le premier test académique qui permet de vérifier la convergence et le bon comportement des méthodes numériques utilisées pour le traitement des conditions de saut à travers l’interface.

Ce test consiste à définir une interface circulaire de rayon R et à la placer au centre d’un domaine fermé, comme cela est schématisé sur la Fig. 3.10.

![Fig. 3.10 – Schéma du cas test d’une goutte statique.](image)

Le champ de vitesse autour de la goutte est initialement nul et en absence des forces gravitaires, la solution théorique de ce cas-test est dictée par la loi de Laplace (3.6.75) que nous avons déjà mentionnée dans la section 3.1.2.
3.6 Tests de validation d’un écoulement diphasique

\[
\begin{aligned}
& p_1 - p_2 = \frac{\sigma}{R} , \text{ en 2D} \\
& p_1 - p_2 = \frac{2\sigma}{R} , \text{ en 3D}
\end{aligned}
\]
(3.6.75)

En théorie, aucun champ de vitesse ne doit apparaître pendant la simulation. Cependant en pratique, les erreurs numériques dues à la discrétisation des schémas, créent des vitesses numériques qui ont tendance à apparaître au voisinage de l’interface comme cela est illustré sur la Fig. 3.11. Ces vitesses numériques portent le nom des courants parasites.

![Visualisation des courants parasites au voisinage de l’interface.](image)

Fig. 3.11 – Visualisation des courants parasites au voisinage de l’interface.

Dans le cas-test d’une goutte statique, les forces capillaires sont dominantes. Ce test est donc idéal pour vérifier si le terme de tension de surface est pris en compte correctement. Pour cela, il suffit de mesurer la valeur des courants parasites, ce qui revient à mesurer l’erreur de calcul de la vitesse.

En sachant, que le champ de vitesse théorique est nul, les normes discrètes peuvent être calculer de la façon suivante :

\[
\|\mathbf{u}\|_{L^\infty} = \max_{i,j} (u_{i,j} + v_{i,j})
\]
(3.6.76)

\[
\|\mathbf{u}\|_{L^2} = \left(\frac{1}{n_x n_y} \sum_{i,j} (u_{i,j}^2 + v_{i,j}^2) \right)^{\frac{1}{2}}
\]
(3.6.77)

où \(n_x\) et \(n_y\) sont les nombres de points du maillage dans les directions \(x\) et \(y\) respec-
formulation et résolution numérique des équations de Navier-Stokes

tivement.

Il existe dans la littérature de nombreux choix possibles pour les paramètres du
cas-test d’une goutte statique [16], [20], [70], [88]. En effectuant le test de Laplace
avec les différentes combinaisons de paramètres, nous nous sommes rendu compte
des limites de la méthode CSF pour le traitement des sauts à travers l’interface
lorsque le problème devient très raide (avec un saut de densité $\rho_1/\rho_2 = 10^3$). Etant
donné que nous nous sommes concentrés sur l’étude des écoulements diphasiques
liquide/liquide, le rapport entre les densités est nettement plus faible. Pour la va-
lication du cas-test d’une goutte statique nous avons donc utilisé les paramètres
de [20], [70].

Nous allons donc considérer une boîte fermée de taille $l_x = l_y = 1$ où la goutte
de diamètre $D = 0.4$ est initialisée dans le centre du domaine. La viscosité des deux
fluides est $\mu_1 = \mu_2 = 0.1$ et le rapport des masse volumiques $\rho_1/\rho_2 = 1$. Le coefficient
de tension de surface est $\sigma = 0.1$.

Les nombres adimensionnelles caractéristiques pour ce cas-test (le nombre ca-
pillaire Ca et le nombre de Laplace La) sont définis par les équations (3.6.78) et
(3.6.79) respectivement.

\[
Ca = \frac{u_{\text{max}} \mu}{\sigma} \tag{3.6.78}
\]

\[
La = \frac{\sigma \rho D}{\mu^2} \tag{3.6.79}
\]

Les résultats des simulations pour le test d’une goutte statique sont obtenus au
temps final t_f défini grâce à l’équation (3.6.80).

\[
t_f = \frac{250 \mu D}{\sigma} \tag{3.6.80}
\]

Dans un premier temps, il est important de vérifier que le nombre capillaire Ca (3.6.78) représentant les courants parasites varie très peu (quasiment constant)
malgré les grandes variations du nombre de Laplace La (3.6.79). Afin de changer le
nombre La nous avons joué soit sur la valeur de la masse volumique de deux fluides,
soit sur le coefficient de tension de surface.

Le Tab. 3.1 regroupe les résultats de ce premier test où le nombre Ca (3.6.78) a
été calculé grâce à la vitesse maximale (3.6.76) récupérée au temps final de simulation
(3.6.80) pour un maillage 32×32. Nous constatons bien que le nombre Ca reste
quasiment constant avec les variations de La.

Nous avons ensuite évalué la convergence en maillage en fixant le nombre de
Laplace à $La = 12000$ et en faisant varier la taille des mailles. Les résultats des
3.6 Tests de validation d’un écoulement diphasique

<table>
<thead>
<tr>
<th>La</th>
<th>12</th>
<th>120</th>
<th>1200</th>
<th>12000</th>
<th>120000</th>
<th>1200000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>4.87 \cdot 10^{-5}</td>
<td>4.87 \cdot 10^{-5}</td>
<td>4.93 \cdot 10^{-5}</td>
<td>6.46 \cdot 10^{-5}</td>
<td>8.61 \cdot 10^{-5}</td>
<td>6.25 \cdot 10^{-5}</td>
</tr>
</tbody>
</table>

Tab. 3.1 – Variations des courants parasites Ca en fonction du nombre La sur un maillage 32 × 32.

Les résultats présentés ci-dessus nous permettent de conclure que le terme de tension de surface est correctement mis en œuvre. Les valeurs des courants parasites sont légèrement supérieures à celles obtenues par des études antérieures bénéficiant d’améliorations du calcul plus complexe de la courbure [33], [75]. Cependant, elles restent très petites, et ne semblent pas affectées d’une manière importante la précision des solutions.

Selon nous, l’apparition des courants parasites est un phénomène de nature numérique lié aux erreurs de discrétisation commises au cours du calcul de la courbure à l’interface. Pour vérifier la conformité d’une telle conclusion nous avons imposé la valeur exacte de la courbure (κ = 1/R) pendant l’assemblage du terme de tension de surface et constaté que la vitesse reste nulle durant tout le temps de simulation. Cela prouve que l’erreur commise à l’étape de calcul de la courbure dans le terme source de tension de surface affecte premièrement la vitesse de prédiction \(\mathbf{u}^n \) dans l’algorithme de décomposition d’opérateurs et ensuite la solution finale (\(\mathbf{u}^{n+1}, p^{n+1} \)) des équations de Navier-Stokes.

Par conséquent, la façon de calculer la courbure requiert une attention particulière pour la bonne prise en compte des conditions de saut, surtout dans le cas d’un écoulement "réellement" diphasique. Nous avons effectué quelques calculs représentatifs pour montrer l’influence du calcul de la courbure sur l’évolution des courants parasites durant la simulation. Cette fois, les paramètres physiques ont été empruntés dans [16], où le rapport entre les masses volumiques des deux fluides était de 10³.

Rappelons les trois façons de calculer la courbure décrites dans la section 3.4.2.3.1:
Formulation et résolution numérique des équations de Navier-Stokes

1. Calcul standard à partir de la normale (utilisation des équations (3.4.62) et (3.4.63)) ;
2. Calcul "lissant" à partir de la normale (utilisation des équations (3.4.62) et (3.4.64)) ;
3. Calcul direct à partir de la fonction Level-Set ϕ (utilisation d’équation (3.4.66)).

Fig. 3.12 – Influence du calcul de la courbure sur l’évolution des courants parasites pour le test d’une goutte statique selon les paramètres physiques de [16].

La Fig. 3.12 présente les résultats de trois simulations effectuées pour le maillage 32×32. D’un cas à l’autre seule la façon de calculer la courbure a changé. Notons que pour les trois simulations le pas de temps a été choisi selon le critère de stabilité numérique présenté dans la section 3.4.3.

Comme nous l’observons sur la Fig. 3.12, les simulations obtenues dans le premier et le troisième cas divergent. Seul le deuxième cas présente des résultats convenables malgré une convergence lente. C’est donc ce dernier que nous avons retenu pour l’ensemble de nos travaux ultérieurs.

3.6.2 Écoulement de Poiseuille diphasique

L’écoulement de Poiseuille diphasique est un test classique de validation du terme visqueux. Ce cas test est particulièrement intéressant pour compléter la partie de
validation d’un écoulement diphasique car il fait l’objet d’une solution analytique.

L’écoulement de Poiseuille diphasique se caractérise par deux flux horizontaux stratifiés entre deux murs parallèles (Fig. 3.13). Chaque flux correspond à un fluide avec des propriétés physiques propres.

Fig. 3.13 – Profil de vitesse d’un écoulement de Poiseuille diphasique.

La gravité et les forces de tension de surface sont négligées. La solution stationnaire obtenue au bout d’un certain temps de calcul peut être comparée avec la solution analytique présentée par l’équation (3.6.81).

\[
\begin{align*}
\text{si } y \leq \frac{H}{2} & \quad \begin{cases}
u_1 = \frac{\Delta p \left(2 (\mu_1 + \mu_2) y^2 + H (\mu_2 - \mu_1) y - \mu_1 H^2 \right)}{4\mu_1 L (\mu_1 + \mu_2)} \\ v_1 = 0 \end{cases} \\
\text{si } y \geq \frac{H}{2} & \quad \begin{cases}
u_2 = \frac{\Delta p \left(2 (\mu_1 + \mu_2) y^2 + H (\mu_2 - \mu_1) y - \mu_2 H^2 \right)}{4\mu_2 L (\mu_1 + \mu_2)} \\ v_2 = 0 \end{cases}
\end{align*}
\]

où \(L \) est la longueur des parois horizontales, \(H \) la distance entre les deux limites horizontales et \(\Delta p = p_S - p_E \) est la différence entre les pressions à la sortie et à l’entrée du canal.

Les conditions aux limites de non glissement sont imposées sur les parois horizontales. À l’entrée et à la sortie du canal, nous avons utilisé les conditions de Neumann sur la vitesse. Les pressions d’entrée et de sortie sont imposées grâce aux conditions aux limites de Dirichlet sur les limites gauche et droite du domaine par \(p_E \) et \(p_S \) respectivement.

À titre d’exemple, nous avons utilisé les paramètres physiques exposés dans [16].
Comme nous l’avons déjà mentionné, au bout d’un certain temps de calcul la solution converge vers la solution stationnaire que nous avons superposé avec la solution analytique. Les résultats du test d’écoulement de Poiseuille diphasique sont présentés sur la Fig. 3.14 pour le maillage 31×31.

Remarquons que pour ce cas particulier, nous avons utilisé des maillages impairs. Ce choix permet de faire coïncider les mailles situées au milieu du domaine avec la position de l’interface et améliore la précision des calculs.

En observant les résultats sur la Fig. 3.14, nous pouvons constater qu’à l’interface, où la viscosité change brusquement de valeur, le profil de vitesse de la solution numérique est légèrement plus lisse que celui de la solution analytique. Cet effet est cependant marginal et est dû à l’utilisation de la méthode CSF qui épaissit l’inter-
3.6 Tests de validation d’un écoulement diphasique

face. Nous pouvons donc conclure que la solution numérique est en bon accord avec la solution analytique.

Afin de mesurer les erreurs numériques en comparaison avec la solution exacte (3.6.81), nous avons effectué une étude de convergence en espace en analysant les normes discrètes.

Pour calculer les normes L^∞ et L^2 de l’erreur sur la vitesse nous avons utilisé les équations suivantes :

$$
|| u^{\text{exacte}} - u^{\text{num}} ||_{L^2} = \sqrt{\frac{1}{n_x n_y} \sum_{i,j} (u^{\text{exacte}}_{i,j} - u^{\text{num}}_{i,j})^2}
$$

$$
|| u^{\text{exacte}} - u^{\text{num}} ||_{L^\infty} = \max_{i,j} \left(| u^{\text{exacte}}_{i,j} - u^{\text{num}}_{i,j} | \right)
$$

où n_x et n_y sont les nombres de points du maillage dans les directions x et y respectivement.

Dans le Tab. 3.3 sont regroupées les normes d’erreur obtenues pour le test d’un écoulement de Poiseuille diphasique.

<table>
<thead>
<tr>
<th>Maillage</th>
<th>17 x 17</th>
<th>31 x 31</th>
<th>63 x 63</th>
</tr>
</thead>
<tbody>
<tr>
<td>$</td>
<td></td>
<td>u^{\text{exacte}} - u^{\text{num}}</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td></td>
<td>u^{\text{exacte}} - u^{\text{num}}</td>
<td></td>
</tr>
</tbody>
</table>

Tab. 3.3 – Évolution des normes d’erreur en fonction du maillage utilisé.

Au vu des erreurs, nous en déduisons que la convergence en espace pour le test d’écoulement de Poiseuille diphasique avec des maillages impairs est approximativement d’ordre 2.

La même étude a été effectuée pour les maillages pairs. L’ordre de convergence obtenu est plus proche de 1.

3.6.3 Bulle ascendante

Il existe de nombreuses références de simulations numériques d’écoulements diphasiques incompressibles avec des fluides subissant des changements complexes de topologie ([4], [12], [35], [60], [82]).

L’étape de validation des outils numériques s’effectue souvent grâce à la comparaison qualitative des simulations numériques avec les résultats expérimentaux de Clift & al. [14] et Bhaga & al. [2]. La validation de codes industriels souvent très
complexes et destinés à être confrontés aux problématiques réelles doit être plus approfondie et l’analyse quantitative est nécessaire.

En absence de solutions analytiques, la validation d’un modèle mathématique peut être effectuée en utilisant les configurations de références numériques. Dans la recherche de configurations de référence notre attention a été attirée par l’étude présentée par Hysing & al. [36]. Les auteurs proposent de suivre une bulle ascendante dans une colonne de liquide en deux dimensions pour différentes configurations de référence, en mettant à l’épreuve non seulement les aspects topologiques de l’interface mais aussi l’évolution de la position du centre de la masse ou de la vitesse d’ascension de la bulle.

Hysing & al. [36] ont obtenu les solutions du problème grâce aux outils numériques de différentes équipes. L’analyse quantitative des résultats a permis aux auteurs d’établir une solution de référence pour les paramètres donnés. Ainsi nous allons confronter les résultats de nos simulations aux solutions de référence de Hysing & al. [36].

3.6.3.1 Paramètres initiaux

Le test d’une bulle ascendante consiste à définir une interface circulaire de rayon $R = 0.25$ centrée dans $[0.5; 0.5]$ et placée dans un domaine rectangulaire de taille $L_x = 1, L_y = 2$ comme cela est schématisé sur la Fig. 3.15.

![Fig. 3.15 – Configuration initiale du test d’une bulle ascendante de Hysing & al.](image)
Les conditions aux limites de non glissement sont imposées sur les parois hori-
izontales :

\[u = 0 \] \hspace{1cm} (3.6.85)

Pour les parois verticales, nous avons utilisé la condition de glissement suivante :

\[u \cdot n = 0, \quad t \cdot (\nabla u + (\nabla u)^T) \cdot n = 0 \] \hspace{1cm} (3.6.86)

Les nombres adimensionnels caractéristiques de ce test sont le nombre de Rey-
nolds (\(Re \)) et le nombre de Bond (\(Bo \)) définis selon (3.6.87) et (3.6.88) respecti-
vement.

\[Re = \frac{\rho_1 u_g D}{\mu_1} \] \hspace{1cm} (3.6.87)

\[Bo = \frac{\rho_1 g D^2}{\sigma} \] \hspace{1cm} (3.6.88)

où \(\rho_1 \) et \(\mu_1 \) sont respectivement la masse volumique et la viscosité du fluide porteur
\((\rho_1 > \rho_2)\), \(D \) est le diamètre de la bulle, \(u_g = \sqrt{gD} \) est la vitesse gravitationnelle et \(\sigma \) est la tension de surface.

Le nombre de Reynolds représente le rapport entre les forces d’inertie et les forces visqueuses, tandis que le nombre de Bond montre le rapport des forces gravitation-
nelles avec les effets de la tension de surface. C’est ce dernier aspect que nous avons
étudié dans nos deux exemples de bulle ascendante dont les paramètres physiques
sont rassemblés dans le Tab. 3.4.

<table>
<thead>
<tr>
<th>Test</th>
<th>(\rho_1)</th>
<th>(\rho_2)</th>
<th>(\mu_1)</th>
<th>(\mu_2)</th>
<th>(g)</th>
<th>(\sigma)</th>
<th>(\rho_1/\rho_2)</th>
<th>(\mu_1/\mu_2)</th>
<th>(Re)</th>
<th>(Bo)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1000</td>
<td>100</td>
<td>10</td>
<td>1</td>
<td>0.98</td>
<td>24.5</td>
<td>10</td>
<td>10</td>
<td>35</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>1000</td>
<td>1</td>
<td>10</td>
<td>0.1</td>
<td>0.98</td>
<td>1.96</td>
<td>1000</td>
<td>100</td>
<td>35</td>
<td>125</td>
</tr>
</tbody>
</table>

Tab. 3.4 – Paramètres physiques définissant les deux tests réalisés.

Nos deux simulations trouvent leur place dans le diagramme des formes des bulles
en fonction des nombres adimensionnels présenté par Clift & al. [14] et illustré sur
la Fig. 3.16.

Même si les résultats de nos simulations sont exposés en deux dimensions, l’ana-
lyse qualitative avec les résultats expérimentaux de Clift & al. [14] est tout à fait
possible.

Pour l’analyse quantitative des résultats, nous avons observé au cours du temps
plusieurs caractéristiques :
Fig. 3.16 – Diagramme de Clift & al. [14] ainsi que les formes des bulles simulées par Bonometti [3].

1. La position du centre de la masse de la bulle définie de la façon suivante :

\[X_C = (x_C, y_C) = \frac{\int_{\Omega_2} x \, dx}{\int_{\Omega_2} 1 \, dx} \]

où \(\Omega_2 \) représente le volume occupé par la bulle (voir la FIG. 3.15).

2. La vitesse d’ascension de la bulle, dont la valeur peut être obtenue selon l’équation (3.6.90).

\[U_C = \frac{\int_{\Omega_2} u \, dx}{\int_{\Omega_2} 1 \, dx} \]

3. La perte de masse définie par :

\[S = \left[\int_{\Omega_2} 1 \, dx \right]_{t=0} - \left[\int_{\Omega_2} 1 \, dx \right]_t \]

où \(\left[\int_{\Omega_2} 1 \, dx \right]_{t=0} \) représente la surface de la bulle à l’état initial et \(\left[\int_{\Omega_2} 1 \, dx \right]_t \)
est la surface au temps courant de la simulation. Cette dernière caractéristique nous a en particulier permis d'évaluer les performances de notre méthode de suivi d'interface.

En prenant les résultats de simulation pour le maillage le plus fin comme la solution de référence nous avons pu évaluer les erreurs commises dans le cadre de ce test grâce aux équations (3.6.92), (3.6.93) et (3.6.94), ainsi que l'ordre de convergence de la méthode défini par l'équation (3.6.95).

\[
\|e\|_{L^1} = \frac{\sum_{t=1}^{n_t} |q_{t}^{ref} - q_t|}{\sum_{t=1}^{n_t} |q_{t}^{ref}|}
\]

\[
\|e\|_{L^2} = \left(\frac{\sum_{t=1}^{n_t} \left(r_{t}^{ref} - q_t \right)^2}{\sum_{t=1}^{n_t} \left(r_{t}^{ref} \right)^2} \right)^{\frac{1}{2}}
\]

\[
\|e\|_{L^\infty} = \max_t \left| q_{t}^{ref} - q_t \right|
\]

où \(q_t \) représente la quantité \(q \) fonction du temps et \(n_t \) est le nombre de pas de temps effectués durant la simulation.

Les erreurs calculées grâce aux équations ci-dessus nous ont permis d’obtenir les ordres de convergence calculés de la façon suivante :

\[
\alpha = \frac{\log_{10} \left(\frac{\|e^{n-1}\|}{\|e^n\|} \right)}{\log_{10} \left(\frac{h^{n-1}}{h^n} \right)}
\]

où \(n \) est le niveau de la grille et \(h \) représente le pas d’espace pour un maillage donné.

Notons que l’ordre de convergence de la méthode est dans les deux cas calculé par rapport à la solution de référence obtenue avec le maillage le plus fin.

3.6.3.2 Test 1 : \(Re = 35 \) et \(Bo = 10 \)

Le premier test a été effectué avec \(Re = 35 \) et \(Bo = 10 \). Les rapports entre les masses volumiques et les viscosités des deux phases ont été fixés à 10. Selon les études expérimentales de Clift & al. [14] une bulle doit avoir une forme ellipsoïdale au bout d’un certain temps d’ascension. Il est clair que dans ce cas, les effets de la tension de surface sont suffisamment élevés pour que la bulle ne se brise pas.
Ce test a été réalisé sur les quatre maillages suivants : $M_{40 \times 80}$, $M_{80 \times 160}$, $M_{160 \times 320}$ et $M_{320 \times 640}$. La solution obtenue avec le dernier maillage représente la solution de référence.

Sur la Fig. 3.17 sont présentés les résultats des simulations d’une bulle ascendante au temps final ($t = 3$ s) zoomés sur l’interface. Les solutions obtenues sur les différents maillages sont confrontées à la solution de référence. La courbe bleue représente l’interface pour la simulation effectuée avec le maillage $M_{40 \times 80}$ sur la Fig. 3.17 (a) et avec le maillage $M_{80 \times 160}$ sur la Fig. 3.17 (b). Sur chaque figure, la courbe rouge correspond à la solution de référence avec le maillage $M_{320 \times 640}$.

Fig. 3.17 – Interface finale du test 1 pour le temps de simulation $t = 3$ s. En bleu - la solution obtenue pour le maillage (a) $M_{40 \times 80}$ et (b) $M_{80 \times 160}$, en rouge - la solution de référence.

En observant les résultats de la Fig. 3.17, il apparaît que la solution obtenue sur
3.6 Tests de validation d’un écoulement diphasique

Fig. 3.18 – Évolution en temps de la position du centre de masse (a) et de la vitesse d’ascension (b) pour le test 1.
le maillage grossier (Fig. 3.17 (a)) est déjà en très bon accord avec la solution de référence malgré une légère différence. La solution obtenue sur maillage plus fin se confond avec la solution de référence (voir la Fig. 3.17 (b)). Il est donc difficile de juger de l’augmentation de précision des solutions obtenues en fonction du raffinement du maillage. Cela se confirme en observant les résultats quasiment superposés d’évolution de la position du centre de la masse et de la vitesse d’ascension en fonction du temps pour les différents maillages présentés sur la Fig. 3.18. C’est pourquoi l’analyse quantitative devient particulièrement utile.

Le Tab. 3.5 rassemble les normes d’erreurs calculées pour la position du centre de masse et pour la vitesse d’ascension de la bulle, ainsi que les taux de convergence associés.

<table>
<thead>
<tr>
<th>Maillage</th>
<th>$|e|_{L^1}$</th>
<th>α_{L^1}</th>
<th>$|e|_{L^2}$</th>
<th>α_{L^2}</th>
<th>$|e|_{L^\infty}$</th>
<th>α_{L^∞}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M40 \times 80$</td>
<td>$2.97 \cdot 10^{-3}$</td>
<td>$3.75 \cdot 10^{-3}$</td>
<td>$8.39 \cdot 10^{-3}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M80 \times 160$</td>
<td>$7.14 \cdot 10^{-4}$</td>
<td>2.05</td>
<td>$8.9 \cdot 10^{-4}$</td>
<td>2.07</td>
<td>$2.62 \cdot 10^{-3}$</td>
<td>1.68</td>
</tr>
<tr>
<td>$M160 \times 320$</td>
<td>$2.91 \cdot 10^{-4}$</td>
<td>1.29</td>
<td>$3.68 \cdot 10^{-4}$</td>
<td>1.27</td>
<td>$1.04 \cdot 10^{-3}$</td>
<td>1.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Maillage</th>
<th>$|e|_{L^1}$</th>
<th>α_{L^1}</th>
<th>$|e|_{L^2}$</th>
<th>α_{L^2}</th>
<th>$|e|_{L^\infty}$</th>
<th>α_{L^∞}</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M40 \times 80$</td>
<td>$1.07 \cdot 10^{-2}$</td>
<td>$1.27 \cdot 10^{-2}$</td>
<td>$4.27 \cdot 10^{-2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$M80 \times 160$</td>
<td>$3.86 \cdot 10^{-3}$</td>
<td>1.47</td>
<td>$4.62 \cdot 10^{-3}$</td>
<td>1.46</td>
<td>$1.52 \cdot 10^{-2}$</td>
<td>1.49</td>
</tr>
<tr>
<td>$M160 \times 320$</td>
<td>$1.27 \cdot 10^{-3}$</td>
<td>1.6</td>
<td>$1.59 \cdot 10^{-3}$</td>
<td>1.54</td>
<td>$4.73 \cdot 10^{-3}$</td>
<td>1.68</td>
</tr>
</tbody>
</table>

Tab. 3.5 – Normes d’erreurs et taux de convergence pour le test 1.

La perte de la masse représente le dernier paramètre que nous avons étudié durant le test de la bulle ascendante dont les résultats sont présentés sur la Fig. 3.19.

Nous observons que la surface de la bulle ne subit quasiment pas de changements au cours des simulations pour les maillages fins. Les changements deviennent visibles pour les grilles grossières ($M40 \times 80$ et $M80 \times 160$). Cependant, ces changements ne dépassent pas la valeur de 3% de perte de masse.
3.6 Tests de validation d’un écoulement diphasique

Fig. 3.19 – Évolution de la perte de masse d’une bulle ascendante au cours du temps pour le test 1.

Remarque sur la réinitialisation :

Notons que la méthode de réinitialisation doit être nécessairement appliquée pendant la simulation pour calculer correctement les propriétés géométriques à l’interface. La Fig. 3.20 présente les résultats du test 1 dans le cas où la méthode de réinitialisation n’est pas utilisée.

Par ailleurs, si la méthode de réinitialisation est appliquée à chaque pas de temps, en supposant que le pas de temps est $\Delta t = 10^{-4}$, nous perdons la précision de la solution par rapport à la solution de référence (voir la Fig. 3.21).

C’est pourquoi, pour les simulations présentées précédemment sur la Fig. 3.17 (a) et (b), nous avons appliqué la méthode de réinitialisation avec l’intervalle de 10^{-3} s, soit tous les 10 pas de temps. Pour ce cas test il semble que ce soit le bon compromis entre précision et temps de calcul.
FIG. 3.20 – Interface finale du test 1 pour le temps de simulation $t = 3\, \text{s}$ quand la méthode de réinitialisation n’est pas appliquée. En bleu - la solution obtenue pour le maillage $M40 \times 80$, en rouge - la solution de référence.

FIG. 3.21 – Interface finale du test 1 pour le temps de simulation $t = 3\, \text{s}$ quand la méthode de réinitialisation est appliquée à tous les pas de temps. En bleu - la solution obtenue pour le maillage $M40 \times 80$, en rouge - la solution de référence.
3.6 Tests de validation d’un écoulement diphasique

3.6.3.3 Test 2 : \(\mathcal{R}e = 35 \) et \(\mathcal{B}o = 125 \)

Le second test a été effectué avec \(\mathcal{R}e = 35 \) et \(\mathcal{B}o = 125 \). Les rapports entre les masses volumiques et les viscosités des deux phases sont cette fois plus importants : 1000 et 100 respectivement.

Selon le diagramme de Clift & al. [14], la bulle du test 2 se trouve dans un régime où sa forme peut être fortement déformée jusqu’à se briser. Nos simulations confirment ce résultat expérimental.

Sur la Fig. 3.22 nous présentons l’évolution de l’interface du test 2 pour le cas de référence (\(M320 \times 640 \)).

Fig. 3.22 – Évolution en temps de l’interface du test 2.
Dans le test 2, la valeur de la tension de surface est plus faible que dans le test 1, ce qui laisse présager le développement d’une bulle de forme plus complexe. À partir de $t = 2.2 \, s$ (Fig. 3.22 (d)), nous pouvons observer le processus de rupture qui se termine à $t = 2.6 \, s$ avec l’apparition de plusieurs gouttelettes isolées.

L’évolution de la solution finale à $t = 3 \, s$ selon le maillage et par rapport à la solution de référence est présentée sur les Figs. 3.23, 3.24, et 3.25.

![Graphique de comparaison des interfaces finales du test 2](image)

Fig. 3.23 – Comparaison des interfaces finales du test 2. En bleu - la solution obtenue pour le maillage $M40 \times 80$, en rouge - la solution de référence.

En observant les résultats, nous remarquons que les fragments brisés de l’interface sont perdus pour le maillage $M40 \times 80$ (Fig. 3.23). Pour les maillages plus fins, le corps de la bulle semble converger vers la solution de référence, tandis que la forme et la position des petites gouttelettes sont plus difficiles à décrire correctement. Même les résultats de simulation obtenus avec le maillage $M160 \times 320$ diffèrent de ceux du maillage $M320 \times 640$ (Fig. 3.25).

Nous avons comparé notre solution de référence ($M320 \times 640$) avec celle de Hysing & al. [36] ($M640 \times 1280$). Les résultats de cette comparaison sont présentés sur la Fig. 3.26. À nouveau, les corps des bulles des deux solutions se superposent parfaitement. Les fragments brisés de l’interface se retrouvent presque à la même position mais leur tailles et leurs nombres sont différents.

Les évolutions en temps de la position du centre de masse et de la vitesse de montée de la bulle sont présentées sur la Fig. 3.27. En observant la Fig. 3.27 (a)
3.6 Tests de validation d’un écoulement diphasique

Fig. 3.24 – Comparaison des interfaces finales du test 2. En bleu - la solution obtenue pour le maillage $M_{80 \times 160}$, en rouge - la solution de référence.

Fig. 3.25 – Comparaison des interfaces finales du test 2. En bleu - la solution obtenue pour le maillage $M_{160 \times 320}$, en rouge - la solution de référence.
Fig. 3.26 – Comparaison des interfaces finales du test 2. En bleu - la solution de référence pour le maillage $M_{320 \times 640}$, en rouge - la solution de référence de Hysing & al. [36] avec le maillage $M_{640 \times 1280}$.

nous pouvons remarquer que l’évolution de la position du centre de masse du test 2 est très proche de celle du test 1. Toutefois, la courbe représentative de la vitesse d’ascension de la bulle diffère d’un test à l’autre (Fig. 3.27 (b)) car elle présente deux maxima locaux dans le deuxième test au lieu d’un dans le premier. Le premier pic de vitesse d’ascension se situe à $t = 0.73 \, s$ et le deuxième au $t = 2.1 \, s$.

Exactement de la même façon que pour le test 1, nous avons calculé les normes d’erreurs de la position du centre de masse et de la vitesse de montée de la bulle dont les résultats sont rassemblés dans le TAB. 3.6.

Les résultats de la perte de la masse pour le test 2 sont présentés sur la Fig. 3.28. En tenant compte des changements complexes de topologie avec l’apparition des fragments brisées de la bulle durant le test 2, les résultats de la Fig. 3.28 sont tout à fait prévisibles. Pour le maillage de référence $M_{320 \times 640}$ moins d’un pourcent de la masse est perdu. L’utilisation des maillages plus grossiers nous amène à observer les variations plus importantes de la masse, mais cette fois encore la valeur de la perte de masse se trouve autour de 3%.
Fig. 3.27 – Évolution en temps de la position du centre de masse (a) et de la vitesse d’ascension (b) pour le test 2.
112Formulation et résolution numérique des équations de Navier-Stokes

Maillage $\|e\|_{L^1}$ α_{L^1} $\|e\|_{L^2}$ α_{L^2} $\|e\|_{L^\infty}$ α_{L^∞}

Position du centre de masse

$M40 \times 80$ $3.45 \cdot 10^{-3}$ 4.86 $\cdot 10^{-3}$ 1.09 $\cdot 10^{-2}$

$M80 \times 160$ $2.04 \cdot 10^{-3}$ 0.76 3.2 $\cdot 10^{-3}$ 0.6 6.48 $\cdot 10^{-3}$ 0.75

$M160 \times 320$ $9.96 \cdot 10^{-4}$ 1.03 1.68 $\cdot 10^{-3}$ 0.93 3.91 $\cdot 10^{-3}$ 0.73

Vitesse d’ascension

$M40 \times 80$ $3.07 \cdot 10^{-2}$ 3.93 $\cdot 10^{-2}$ 8.46 $\cdot 10^{-2}$

$M80 \times 160$ $2.34 \cdot 10^{-2}$ 0.4 3.37 $\cdot 10^{-2}$ 0.22 6.67 $\cdot 10^{-2}$ 0.35

$M160 \times 320$ $8.92 \cdot 10^{-3}$ 1.4 1.35 $\cdot 10^{-2}$ 1.32 2.97 $\cdot 10^{-2}$ 1.17

Tab. 3.6 – Normes d’erreurs et les taux de convergence pour le test 2.

Remarque sur la réinitialisation :

Exactement de la même manière que pour le premier test, les simulations du test 2 présentées ci-dessus ont été effectuées en appliquant la méthode de réinitialisation avec l’intervalle de 10^{-3} s, soit tous les 10 pas de temps.

3.6.3.4 Conclusion

À l’aide des tests de référence de Hysing & al. [36] d’ascension d’une bulle solitaire dans une colonne de liquide, nous avons accompli avec succès l’étape de validation de notre outil numérique.

Pour conclure, signalons que le test 1 présente des hypothèses de simulations amenant à des résultats classiques avec une forme finale de bulle ellipsoïdale. Cette forme simple est obtenue par la plupart des outils de simulations d’écoulements diphasiques dans [36]. Le test 2 en revanche, conduit à une forme finale de la bulle plus complexe qui change significativement selon l’outil et les méthodes de simulation employés. C’est avec ce deuxième test que les différences sont sensibles et nous observons que nos résultats se rapprochent de ceux de Hysing & al. obtenus avec leur outil de simulation TP2D.

Afin de mieux comprendre et valider les résultats des simulations, nous avons effectué l’analyse quantitative à travers des valeurs de la position du centre de masse, de la vitesse d’ascension et des pertes de masse.
Fig. 3.28 – Évolution de la perte de masse d’une bulle ascendante au cours du temps pour le test 2.
Formulation et résolution numérique des équations de Navier-Stokes
Applications

Sommaire

4.1 Inversion de phase .. 116
4.2 « Bottle Test » .. 121

Les trois premiers chapitres de ce manuscrit nous ont permis de retracer toutes les étapes de construction de notre outil de simulation d’écoulements diphasiques. Les analyses bibliographique et méthodologique initiales nous ont permis de bâtir successivement deux modules logiciels, la description du transport de l’interface d’une part puis la description physique de l’écoulement d’autre part. Ces deux modules ont finalement été assemblés et ont fait l’objet de plusieurs étapes de validation, parmi lesquelles le test de la bulle ascendante constitue l’ultime étape et met un terme à l’intégration globale de notre code.

Nous pouvons désormais nous concentrer sur l’objectif initial de nos travaux à savoir : modéliser les stades successifs de formation et décantation d’une émulsion dense caractéristique du processus de séparation.

Nous avons pour cela mis en œuvre deux simulations d’application :

– l’inversion de phase, qui illustre bien les phénomènes de rupture et coalescence entre les gouttes,
– la séparation de deux phases à partir d’une émulsion réduite d’une vingtaine de gouttes.
4.1 Inversion de phase

Tout d’abord, nous nous sommes intéressés aux processus de coalescence et de rupture entre les gouttes dans un écoulement diphasique. Le test d’inversion de phase d’huile dans l’eau ([42], [89]) nous a paru le plus approprié pour décrire ces deux phénomènes en même temps. Ce test consiste à définir un état initial dans lequel un fluide léger (huile) est noyé au fond d’un fluide plus lourd (eau) dans une boîte totalement fermée.

Les paramètres adimensionnels caractéristiques de cette simulation sont le nombre de Reynolds et le nombre de Weber définis par les équations (4.1.1) et (4.1.2) respectivement.

\[
\mathcal{R}_e = \frac{\rho_w u L}{2\mu_w} \quad (4.1.1)
\]

\[
\mathcal{W}_e = \frac{\rho_w u^2 L}{2\sigma} \quad (4.1.2)
\]

où \(u = \frac{\rho_w - \rho_o}{\rho_w} \sqrt{gL/2} \) est la vitesse caractéristique, \(\rho_w \) et \(\rho_o \) les densités de la phase d’eau et d’huile respectivement, \(\mu_w \) la viscosité de l’eau, \(L \) la taille caractéristique du domaine et \(\sigma \) le coefficient de la tension de surface.

L’état initial de la simulation se compose d’une boîte carrée (de coté \(L \)) remplie d’eau dans laquelle un carré d’huile de coté \(L/2 \) est placé en bas à gauche, comme cela est schématisé sur la Fig. 4.1.

Nous avons réalisé plusieurs simulations afin de mettre en évidence l’influence de la tension de surface et afin d’illustrer le rôle joué par la finesse du maillage sur la précision de la simulation. Nous présentons ici les résultats pour les maillages \(64 \times 64 \) et \(256 \times 256 \), pour deux nombres de Weber : la Fig. 4.2 \(\mathcal{W}_e = 537 \) et la Fig. 4.3 \(\mathcal{W}_e = 24 \). Le nombre de Reynolds est le même pour les deux simulation \(\mathcal{R}_e = 550 \).

Les paramètres physiques de la simulation sont rassemblés dans le Tab. 4.1.

<table>
<thead>
<tr>
<th>(\rho_w, \left[\frac{kg}{m^2} \right])</th>
<th>(\rho_o, \left[\frac{kg}{m^2} \right])</th>
<th>(\mu_w, [Pa \ s])</th>
<th>(\mu_o, [Pa \ s])</th>
<th>(\sigma, \left[\frac{N}{m} \right])</th>
<th>(L, m)</th>
<th>(\mathcal{R}_e)</th>
<th>(\mathcal{W}_e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>900</td>
<td>0.2</td>
<td>20</td>
<td>0.045</td>
<td>1.0</td>
<td>550</td>
<td>537</td>
</tr>
<tr>
<td>1000</td>
<td>900</td>
<td>0.2</td>
<td>20</td>
<td>1.0</td>
<td>1.0</td>
<td>550</td>
<td>24</td>
</tr>
</tbody>
</table>

Tab. 4.1 – Paramètres physiques de la simulation d’inversion de phase.

L’huile (en noir sur la Fig. 4.2), plus légère et soumise à la gravité, a tendance à monter en se déstructurant, laissant échapper quelques gouttes dans la phase continue, ce qui correspond au phénomène de rupture (Fig. 4.2 (b) à l’instant \(t = 9.69 \) s).
4.1 Inversion de phase

Fig. 4.1 – Configuration initiale du problème de l’inversion de phase huile/eau.

Ensuite, l’huile se place au sommet de la boîte piégeant quelques gouttes d’eau dans l’huile. À l’état final, la majorité des gouttes d’eau a coalescé et a sédimenté dans la phase d’eau inférieure jusqu’à obtenir un état complètement séparé.

La différence entre les résultats graphiques, au regard du nombre de Weber choisi, est bien cohérente. Elle confirme qu’une valeur élevée de la tension de surface renforce la cohésion des fluides, ce qui réduit les phénomènes de rupture et donne donc lieu à la formation de gouttes de plus grandes dimensions.

Notons que les résultats acquis pour un maillage de taille 64×64 (Fig. 4.2 (a) et Fig. 4.3 (a)) affichent une dynamique d’écoulement plus grossière et les phénomènes de petites échelles que nous observons sur le maillage 256×256 (Fig. 4.2 (b) et Fig. 4.3 (b)) n’apparaissaient pas. L’influence de la résolution est donc manifeste, en particulier sur les phénomènes de coalescence et de rupture, mais le temps de séparation reste du même ordre de grandeur.

Toutefois, pour appuyer cette analyse, nous proposons d’analyser la Fig. 4.4 qui indique l’évolution de la masse d’huile au cours du temps pour les deux simulations précédentes en fonction du maillage utilisé. Alors que la perte de masse par rapport à l’état initial n’excède pas 7% pour le maillage 256×256, ce qui reste raisonnable, elle était nettement plus importante pour le maillage 64×64.
Fig. 4.2 – Évolution temporelle de l’inversion de phase huile/eau dans une boîte fermée, \(Re = 550, We = 537 \).
4.1 Inversion de phase

Fig. 4.3 – Évolution temporelle de l’inversion de phase huile/eau dans une boîte fermée, $Re = 550$, $We = 24$.
Conclusion

Les résultats issus de deux tests d’inversion présentés dans ce document sont satisfaisants. Chacun considéré indépendamment présente une dynamique qui semble naturelle et la comparaison entre les deux, après modification du nombre de Weber, est cohérente avec les principes de la physique. Cela nous permet d’envisager l’utilisation de la méthode pour l’étude de processus physiques plus complexes comme le processus de séparation dans le cas d’émulsion.

L’inversion de phase que nous avons simulée présente trois étapes successives : l’état initial, avec deux phases continues séparées par une interface, puis une phase dispersée, pour enfin revenir à l’état final, à deux phases continues. Nous avons ainsi illustré les phénomènes à la fois de coalescence et de rupture de gouttes.

Ces tests constituent donc une étape déterminante avant de nous orienter vers la simulation d’une véritable émulsion dans laquelle plusieurs gouttes d’eau seront dispersées dans une phase continue d’huile. L’objectif de ce type de simulation sera d’évaluer l’influence des propriétés physiques des fluides sur l’évolution temporelle du front de séparation.
4.2 « Bottle Test »

La configuration d’une expérience de « Bottle Test » est illustrée sur la Fig. 4.5. L’expérience de « Bottle Test » consiste à évaluer le temps de décantation d’une émulsion, en mesurant l’évolution du front de séparation entre les deux phases.

L’industrie pétrolière est particulièrement friande dans la réalisation de ce type de test car il est utilisé pour définir les produits chimiques tensioactifs (démulsifiants) les plus efficaces pour la séparation des émulsions eau/huile. De plus, étant donnée la toxicité de la plupart des démulsifiants, il est important de déterminer la quantité minimale qui suffira à briser l’émulsion en facilitant le processus de coalescence.

![Fig. 4.5 – Configuration initiale du « Bottle Test »](image)

Pour clore ce chapitre nous souhaitons donc simuler une expérience de « Bottle Test » dont l’état initial est une émulsion représentée sur la Fig. 4.5. Cette simulation nous permet d’illustrer l’importance des paramètres physiques sur l’hydrodynamiques de l’écoulement ainsi que sur le temps nécessaire à la séparation des deux phases.

Les paramètres de la simulation ont été choisis pour respecter les propriétés physiques d’une émulsion réelle [17].

Nous avons mis en œuvre trois essais numériques grâce auxquels nous avons mis en évidence l’influence de la tension superficielle, d’une part, et de la viscosité, d’autre part, sur le temps de séparation.
La taille du domaine est définie par \(L_x = 0.055 \, m \) et \(L_y = 0.07 \, m \). Le nombre de gouttes d’eau initialement placées dans l’huile est donné par \(N = 20 \). Le diamètre des gouttes est \(d = 10^{-2} \, m \) et donc la fraction volumique d’eau représente \(\phi = 40\% \).

Les masses volumiques de la phase dispersée (eau) et de la phase continue (huile) sont définies respectivement par \(\rho_w = 1000 \, kg \cdot m^{-3} \), \(\rho_o = 890 \, kg \cdot m^{-3} \). La viscosité de l’eau est \(\mu_w = 0.001 \, Pa \cdot s \).

Les paramètres physiques correspondant aux trois cas différents de simulations sont rassemblés dans le Tab. 4.2.

<table>
<thead>
<tr>
<th>Test</th>
<th>(\mu_w), ([Pa \cdot s])</th>
<th>(\sigma), ([N \cdot m^{-1}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cas 1</td>
<td>0.04</td>
<td>0.21</td>
</tr>
<tr>
<td>Cas 2</td>
<td>0.04</td>
<td>0.021</td>
</tr>
<tr>
<td>Cas 3</td>
<td>0.1</td>
<td>0.21</td>
</tr>
</tbody>
</table>

Tab. 4.2 – Paramètres physiques des simulations de « Bottle Test ».

Les gouttes d’eau sont initialement introduites dans le domaine de façon aléatoire. Elles sont soumises à la gravité et, plus lourdes que l’huile, elles ont tendance à sédimerter et à former les gouttes plus grosses par coalescence. Ce phénomène de sédimentation alimenté et accéléré par la coalescence conduit au final à la séparation des deux phases.

Selon les paramètres physiques (tension de surface, masse volumique, viscosité), le processus de séparation est plus ou moins rapide. Nous observons que pour l’essai 1 (Fig. 4.6), l’état séparé est obtenu au bout de \(t = 4.25 \, s \) alors que pour les essais 2 et 3 (Figs. 4.7 et 4.8) il faut attendre \(t = 5.8 \, s \) et à \(t = 7.7 \, s \) respectivement.

Les résultats graphiques des essais 1 et 2 sont cohérents avec les choix de tension de surface \(\sigma \), dont la valeur est plus élevée pour l’essai 1, ce qui rend la cohésion des fluides plus forte et réduit les phénomènes de rupture, en comparaison avec l’essai 2 (Figs. 4.7 et 4.8). Nous observons également la formation de gouttes plus petites (Fig. 4.7) lorsque la tension de surface est faible.

L’augmentation de la viscosité de la phase d’huile dans l’essai 3 ralentit logiquement le processus de séparation, puisque les gouttes vont mettre plus de temps à se déplacer et à coalescer.
Fig. 4.6 – Évolution temporelle du « Bottle Test », cas 1 ($\sigma = 0.21 \, N \cdot m^{-1}$, $\mu_o = 0.04 \, Pa \cdot s$).
Fig. 4.7 – Évolution temporelle du « Bottle Test », cas 2 ($\sigma = 0.021 \, N \cdot m^{-1}$, $\mu_o = 0.04 \, Pa \cdot s$).
Fig. 4.8 – Évolution temporelle du « Bottle Test », cas 3 ($\sigma = 0.21 \, N \cdot m^{-1}$, $\mu_o = 0.1 \, Pa \cdot s$).
Conclusion

Notons qu’au stade actuel de développement de notre outil numérique, nous modélisons uniquement l’influence des propriétés physiques sur l’hydrodynamique de l’écoulement diphasique. C’est la raison pour laquelle le phénomène de coalescence nous apparaît systématiquement. Nous obtenons toujours un état de séparation complet.

Dans le cas de fluides réels, à l’échelle moléculaire, d’autres forces non prises en compte ici telles que les forces électrostatiques de répulsion (pression de disjonction), s’opposent au phénomène de coalescence. La simple prise en compte des forces de la tension de surface ne suffit donc plus à modéliser le mécanisme physique de séparation de fluides réels.

La prise en compte de l’aspect physico-chimique dans la modélisation d’un écoulement diphasique nous semble nécessaire du fait de l’observation courante dans l’industrie pétrolière d’émulsions dites « stables ». Des films liquides très fins, qui se forment entre les gouttes (bulles) très rapprochées, sont à l’origine de ce phénomène. De la stabilité de ces films dépend la stabilité de l’émulsion car les gouttes ne peuvent pas coalescer tant que le film n’est pas brisé.

Au cours du processus de décantation, les gouttes se déplacent. Elles s’éloignent ou se rapprochent les unes par rapport aux autres. Ainsi, le film liquide formé entre les gouttes voit son épaisseur varier pour finalement atteindre, à l’état stable, une épaisseur critique dont la valeur dépend de la pression de disjonction, i.e. la force exercée par unité de surface entre les deux faces du film.

Dans nos futurs travaux, nous envisageons d’étudier en détail la possible prise en compte des aspects physico-chimiques afin de rendre la modélisation des émulsions plus riche et plus proche encore de la réalité. En particulier, nous souhaitons parvenir à simuler une émulsion qui reste stable dans le temps.
Conclusion et Perspectives

Au cours de ces travaux de thèse effectués dans la direction de mécanique appliquée de IFP Énergies nouvelles, nous nous sommes attachés à développer un outil de simulation numérique directe des écoulements à phases dispersées.

De nombreuses applications industrielles nécessitent ce type d’outil. Cependant, selon l’objectif de l’application et le processus physique mis en jeu, différentes méthodes de simulation sont employées. Notre travail de thèse a donc débuté par l’analyse des études existantes dans le domaine de la modélisation des écoulements diphasiques dans le cadre de la production pétrolière.

La production pétrolière, en condition réelle, fait intervenir différents types d’écoulements diphasiques [7]. Nous nous sommes concentrés sur les écoulements dispersés qui sont les plus représentatifs du processus de séparation. C’est en effet dans ce type d’écoulement que les principaux mécanismes physiques qui gouvernent les phénomènes de séparation se produisent. Or la simulation de ces phénomènes, coalescence et rupture principalement, requiert une description particulièrement fine de l’interface entre les fluides. Le choix de la méthode de suivi d’interface était donc une étape importante de notre travail.

Nous avons décrit cette étape dans la première partie de ce mémoire où nous exposions et analysions plusieurs méthodes numériques de modélisation de l’interface dans un écoulement diphasique, avant d’expliquer pourquoi notre choix s’est finalement porté sur la méthode Level-Set.

Dans la deuxième partie, notre travail s’est poursuivi par la description de cette méthode et par celle de l’équation de transport nécessaire à la modélisation de l’évolution spatio-temporelle de l’interface.

Nous avons souligné l’importance d’utiliser des schémas numériques d’ordres suffisamment élevés pour pouvoir prédire précisément les mouvements de l’interface et pour pallier le point faible de la méthode Level-Set, à savoir le phénomène indésirable de perte de masse.
Nous sommes parvenus à traiter ces exigences en utilisant le schéma Runge-Kutta d’ordre 2 pour la discrétisation temporelle et le schéma WENO d’ordre 5 pour la discrétisation spatiale.

D’autre part, nous avons souligné l’importance d’appliquer l’algorithme de ré-initialisation afin d’assurer le bon calcul des propriétés géométriques et nous avons également rappelé la tendance génante de cet algorithme à déplacer l’interface.

Ces effets connus nous ont amenés à utiliser à nouveau un schéma WENO d’ordre 5 pour la discrétisation spatiale de l’équation d’Hamilton-Jacobi. En effet, grâce à ce schéma, le déplacement de l’interface ne devient significatif qu’après plusieurs centaines d’itérations de l’algorithme. Or, seules une ou deux itérations par pas de temps sont requises dans notre cas, avec la fonction Level-Set, car nous pouvons nous contenter de respecter la propriété distance aux environs de l’interface et non dans tout le domaine.

La méthode Level-Set et l’algorithme de réinitialisation ont ainsi été validés avec succès sur plusieurs cas-tests académiques. Cela nous a permis d’apprécier les avantages de cette méthode, ainsi que quelques limitations.

Munis d’outils appropriés et précis pour le suivi d’interface, nous avons dans la troisième partie de ce manuscrit, porté notre intérêt sur le développement d’un solveur des équations de Navier-Stokes incompressible que nous avons couplé avec celui de l’équation de transport de l’interface au travers des propriétés physiques de l’écoulement diphasique.

Parmi les différentes procédures existantes pour l’implémentation numérique des équations de Navier-Stokes, nous avons choisi la méthode de décomposition d’opérateurs [27]. Le principe de cette méthode consiste à décomposer des opérateurs différentiels en somme d’opérateurs simples (sous-problèmes) du problème général. Cette décomposition a rendu la procédure de résolution des équations de Navier-Stokes plus aisée car nous avons pu traiter chaque sous-problème de façon séparée et appliquer une méthode de résolution adaptée à chacun d’entre eux.

En ce qui concerne le terme de tension de surface, il a été ajouté à l’équation de conservation de quantité de mouvement en tant que terme source grâce à la méthode CSF (Continuum Surface Force [6], [74]). Cette méthode a été validée sur le test d’une goutte statique (test de Laplace). Au cours de ce test, nous avons observé et mesuré les courants parasites qui, selon nous constituent un phénomène numérique lié aux erreurs de discrétisation commises au cours du calcul de la courbure à l’interface. Nous avons comparé plusieurs techniques pour calculer cette valeur de la courbure et retenu la meilleure d’entre elles.

Finalement, la validation de l’ensemble des méthodes utilisées dans notre outil
numérique de simulation d’écoulements diphasiques a été effectuée grâce au test de
la bulle ascendante. Ce test nous a permis de mettre à l’épreuve non seulement
l’aspect morphologique de l’interface (qualitatif) mais aussi les aspects indirects
(quantitatifs) comme l’évolution de la position du centre de la masse ou de la vitesse
d’ascension de la bulle. Les résultats obtenus ont été comparés avec succès aux
solutions de référence.

Après plusieurs étapes de validation, nous sommes parvenus au terme de l’intégration
globale de notre outil numérique. Dans la dernière partie de ce mémoire
nous avons donc pu nous concentrer sur l’objectif initial de nos travaux qui était
de modéliser les stades successifs de formation et décantation d’une émulsion dense
caractéristique du processus de séparation. Pour cela nous avons mis en œuvre deux
applications : le test d’inversion de phase et celui couramment appelé « bottle test ».

Le test d’inversion de phase d’huile dans l’eau a été réalisé en mettant en jeu
deux changements d’état - passage d’un état complètement séparé vers une émulsion
puis le retour de l’émulsion à l’état séparé - dans lesquels s’illustrent successivement
les phénomènes de rupture et de coalescence. Auparavant utilisé pour observer la
formation d’une émulsion d’écoulement turbulent ce test a attiré notre attention
par la simplicité de son état initial. Néanmoins la complexité d’état de la dispersion
obtenue, même pour un écoulements laminaire (comme dans notre cas), empêche la
comparaison de la solution avec les solutions de référence.

Toutefois, un autre avantage considérable de ce test est l’existence d’une solution
théorique, où la position finale de l’interface est connue avec précision (une interface
huile/eau horizontale dans la partie supérieure de la boîte fermée). C’est grâce à
 cette propriété que nous avons testé les performances de la méthode Level-Set à
l’égard de la perte de masse.

Par la suite, nous nous sommes orientés vers la simulation d’une véritable émul-
sion à travers le « bottle test », où nous avons évalué l’influence des propriétés
physiques des deux fluides sur l’évolution temporelle du front de séparation. Les
résultats obtenus pour le « bottle test » ne sont que des résultats préliminaires en ce
sens qu’ils ne peuvent pas être comparés aux nombreux travaux expérimentaux car
les forces électrostatiques de répulsion, s’opposant au phénomène de coalescence, ne
sont pas prises en compte pour le moment.

Néanmoins, les résultats obtenus dans le cadre de cette thèse représentent à nos
yeux une première étape très importante de la conception d’un outil numérique
capable de simuler un écoulement diphasique réel.

Pour la poursuite de ces travaux, il serait souhaitable de commencer par l’amé-
lioration de la méthode de suivi d’interface afin de limiter l’influence du problème

Par la suite, la méthode de traitement des conditions de saut peut être pour sa part améliorée par l’implémentation de la méthode Ghost Fluid. Cette méthode permet de coupler les valeurs représentant les sauts à travers l’interface, sans qu’il soit nécessaire d’appliquer l’algorithme de régularisation. Par conséquent, la physique à proximité de l’interface sera cette fois respectée, ce qui jouera certainement un rôle non négligeable dans le cas de la modélisation d’une émulsion.

Comme nous l’avons précisé ci-dessus au stade actuel de développement d’outil numérique pour la simulation d’une émulsion nous n’avons tenu compte que des aspects hydrodynamiques liés au mouvement de l’interface. En réalité lorsque deux gouttes se rapprochent, elles subissent aussi les interactions thermodynamiques qui sont en partie dues aux forces électrostatiques. Ce type de forces est directement dépendant de la distance qui sépare les gouttes.

En dernière étape de perspective nous envisageons d’étudier en détail la possibilité de prise en compte des aspects physico-chimiques d’un écoulement diphasique à l’échelle moléculaire afin de se rapprocher encore de la réalité.

Dans ce cas, les moyens de changement d’échelle doivent être examinés de près car le modèle développé dans le cadre de cette thèse devient un modèle macroscopic et dépend alors d’un modèle microscopique mettant en jeu les phénomènes physico-chimiques de l’écoulement diphasique. En effet, ces deux modèles illustrent la même physique à des échelles différentes. Pour que le résultat de la simulation soit pertinent, ils doivent donc être cohérents l’un vis-à-vis de l’autre, en tout point et à chaque instant de la simulation.

Pour cela un modèle d’interaction entre les échelles doit nécessairement être mis en œuvre.
Bibliographie

P. Smereka. Level Set methods for two-fluid flows. *Lecture notes from a short course given at INRIA*.

Annexe A

Communications issues des congrès
DIRECT NUMERICAL SIMULATION OF TWO-FLUID FLOWS WITH A LEVEL-SET METHOD

Kateryna VORONETSKA†, Guillaume VINAY‡, Anthony WACHS‡, Jean-Paul CALTAGIRONE§

1IFP Energies nouvelles, Fluid Mechanics Department, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, FRANCE
2Université Bordeaux 1, Institut d’Ingénierie Mécanique, TREFLE, 16 avenue Pey-Berland, 33607 Pessac, FRANCE
3IFP Energies nouvelles, Fluid Mechanics Department, 1-4 avenue de Bois-Préau, 92852 Rueil-Malmaison, FRANCE

†E-mail: kateryna.voronetska@ifpen.fr
‡E-mail: guillaume.vinay@ifpen.fr
§E-mail: anthony.wachs@ifpen.fr
E-mail: calta@ipb.fr

ABSTRACT
In the petroleum industry flows of non-miscible fluids are frequently met, especially for the separation process in production. The present work is dedicated to the simulation of two-phase dispersed flow. The Level-Set method was chosen to describe precisely the interface and the interactions between phases. Incompressible Navier-Stokes equations are solved thanks to the Operator-Splitting method. It allowed us to split the problem into three sub problems (advection, diffusion and degenerated Stokes) and to use a specific solution method for each of them. When it comes to the processing data that show a shift at the interface. 2D parallel simulations called “phase inversion” were performed to study in detail the separation process.

Keywords: level-set, bubble and droplet dynamics, phase inversion.

NOMENCLATURE

Greek Symbols

\(\phi\) Level-Set function.
\(\kappa\) Curvature. \([/\text{m}]\).
\(\tau\) Fictitious time. \([/\text{s}]\).
\(\Delta\tau\) Fictitious time step. \([/\text{s}]\).
\(\rho\) Density, \([\text{kg}]/[\text{m}^3]\).
\(\mu\) Dynamic viscosity, \([\text{Pa}]/[\text{s}]\).
\(\sigma\) Surface tension coefficient. \([\text{N/m}]\).
\(\delta_e\) Regularized form of the Dirac function.
\(\rho_w\) Density of water, \([\text{kg}]/[\text{m}^3]\).
\(\rho_o\) Density of oil, \([\text{kg}]/[\text{m}^3]\).
\(\mu_w\) Dynamic viscosity of water, \([\text{Pa}]/[\text{s}]\).
\(\mu_o\) Dynamic viscosity of oil, \([\text{Pa}]/[\text{s}]\).

Latin Symbols

\(n\) Normal to the interface.
\(u\) Velocity, \([\text{m}]/[\text{s}]\).
\(t\) Physical time. \([/\text{s}]\).
\(p\) Pressure, \([\text{Pa}]\).
\(D\) Deformation rate.
\(g\) Gravity vector, \([\text{m}]/[\text{s}^2]\).
\(H_e\) Regularized form of the Heaviside function.
\(\Delta x\) Cell size. \([/\text{m}]\).
\(\Delta t\) Discrete time step. \([/\text{s}]\).
\(L\) Characteristic size of the domain, \([/\text{m}]\).

\(D\) Diameter, \([/\text{m}]\).
\(Re\) Reynolds number.
\(We\) Weber number.
\(Ca\) Capillary number.
\(La\) Laplace number.

Sub/superscripts
\(e\) Interface fictive thickness.
drops coalescence or breakage. To validate our work, we chose the phase inversion test. Our code is developed under the framework of the full MPI open source platform PELICANS.

NUMERICAL MODELING OF A TWO-PHASE FLOW

To model a two-phase flow, it is necessary to choose an appropriate interface tracking method and to develop a solver for Navier-Stokes incompressible equations to compute the velocity and pressure values. Also, a coupling method, able to handle the discontinuous quantities at the interface, has to be implemented.

In our case, we considered non-miscible, newtonian and homogeneous fluids; density and viscosity are constant in each phase.

Level-Set method

Among all methods for interface tracking, we focused on methods that are able to deal with high topology changes at the interface. We finally chose the Level-Set (Osher and Sethian, 1988) to describe precisely the interface. Level-Set method principle is to define a scalar function \(f \) at the interface. We finally chose the Level-Set (Osher and Sethian, 1988) to describe precisely the interface. The interface evolution in a given velocity field and Kothe, 1995). We solved (3) et al., 1992), the regularized Dirac function is defined as follows :

\[
\delta_\varepsilon(\phi) = \begin{cases}
0 & \text{if } |\phi| \leq \varepsilon \\
\frac{1}{\varepsilon} & \text{if } \phi > \varepsilon \\
\frac{1}{\varepsilon} & \text{if } \phi < -\varepsilon
\end{cases}
\]

where \(\varepsilon \) is the smoothing parameter that defines the interface fictive thickness. The thickness is \(\varepsilon = \frac{1}{2} \Delta x \), where \(\Delta x \) stands for the cell size.

The expression of the surface tension has been added as a source term in the momentum equation (first equation in (4)), following CSF model : \(-\sigma \kappa(\phi) \delta_\varepsilon(\phi) \nabla f \). For this formulation the regularized Dirac function is defined as follows :

\[
\delta_\varepsilon(\phi) = \frac{dH_\varepsilon(\phi)}{d\phi} = \begin{cases}
0 & |\phi| > \varepsilon \\
\frac{1}{2\varepsilon} & \left(1 + \cos \left(\frac{\pi \phi}{\varepsilon} \right) \right) & \text{if } |\phi| \leq \varepsilon
\end{cases}
\]

Remark :

In the validation test cases presented below, the re-distancing algorithm was used only for the Rider and Kothe test (Rider and Kothe, 1995).

Operator splitting algorithm

The interface tracking Level-Set method was then coupled with an operator splitting algorithm (Glowinski, 2003) to solve the Navier-Stokes incompressible equations (4).

\[
\begin{align*}
\rho(\phi) \left(\frac{\partial u}{\partial t} + (u \cdot \nabla) u \right) &= -\nabla p + \nabla \cdot (2\mu(\phi) D) \\
- \sigma \kappa(\phi) \delta_\varepsilon(\phi) \nabla f &= \rho(\phi) g \\
\nabla \cdot u &= 0
\end{align*}
\]

where \(2\mu(\phi) D \) is the stress tensor. This method allowed us to split the problem into three sub-problems (advection, diffusion and degenerated Stokes) and to apply an appropriate solving method to each of them. The viscous term was assembled implicitly in the linear system. For discretization of the divergence of the stress tensor

\[
\nabla \cdot (2\mu(\phi) D) = \left(\frac{(\mu_1 \kappa_x)}{2} + \frac{\mu_3 \kappa_y}{2} \right) \\
\left(\frac{\mu_1 \kappa_z}{2} + \frac{\mu_3 \kappa_y}{2} \right)
\]

as well as for the curvature term, we used central differencing in identical manner to (Sussman et al., 1994).

Continuum surface force (CSF) method

As said above, the fact of considering non-miscible fluids led us to the concept of interface. The separation layer stands for an interface through which physical properties of both fluids change drastically. To deal with the variation of properties at the interface, we defined density \(\rho(\phi) \) and viscosity \(\mu(\phi) \) according to the following equations (6).

\[
\begin{align*}
\rho(\phi) &= \rho_0 + (\rho_v - \rho_0) H_\varepsilon(\phi) \\
\mu(\phi) &= \mu_0 + (\mu_v - \mu_0) H_\varepsilon(\phi)
\end{align*}
\]

In the CSF approach (Brackbill et al., 1992), the regularized form of the Heaviside function \(H_\varepsilon(\phi) \) is smoothed on two nodes approximately on each side of the interface.

\[
H_\varepsilon(\phi) = \begin{cases}
0 & \phi < -\varepsilon \\
\frac{1}{\varepsilon} \left(1 + \frac{\phi}{\varepsilon} + \frac{1}{\pi} \sin \left(\frac{\pi \phi}{\varepsilon} \right) \right) & |\phi| \leq \varepsilon \\
1 & \phi > \varepsilon
\end{cases}
\]

\[
H_\varepsilon(\phi) = \begin{cases}
0 & |\phi| > \varepsilon \\
\frac{1}{2\varepsilon} \left(1 + \cos \left(\frac{\pi \phi}{\varepsilon} \right) \right) & |\phi| \leq \varepsilon
\end{cases}
\]

FINITE VOLUME METHOD

Discretization consists in dividing the computational domain in a finite number of volumes. A centered control volume, on which are integrated the equations to solve, is associated to each variable. A staggered grid is adopted to integrate the discretized form of the continuity momentum and Level-Set
transport equations. The velocity components are located at the cell faces whereas pressure and Level-Set function are cell centered. We have chosen the TVD Lax-Wendroff scheme with a Superbee flux limiter (Sweby, 1984) for the spatial discretization of the advection term in the momentum equation. When it comes to the convective terms in the transport equation (2) and in the Hamilton-Jacobi equation (3), a high order scheme to get suitable results is required. We therefore implemented the 5th order WENO scheme (Jiang and Shu, 1996). Transient terms are discretized thanks to the explicit 1st order Euler scheme for the Navier-Stokes equations and thanks to the 2nd order Runge-Kutta scheme for the interface transport. The discrete time step Δt was calculated to satisfy the stability condition given in (Kang et al., 2000).

The general algorithm to simulate a two-phase flow is given hereunder:

- Interface initialization with the Level-Set function ϕ.
- At each time step ($n = 1, 2, \ldots$):
 1. Computation of the interface geometrical properties as well as density $\rho(\phi)$ and viscosity $\mu(\phi)$.
 2. Solution of Navier-Stokes with the operator splitting algorithm.
 - Solution of the advection-diffusion problem. Gravity and surface tension terms are computed here.
 - Solution of the degenerated Stokes problem (Poisson’s equation for the variable coefficient (Liu et al., 2000)).
 3. Solution of the transport equation for the Level-Set function using the velocity computed at step 2.
 - Application of the re-distancing algorithm.
 - Update of the Level-Set function ϕ.

Running a direct numerical simulation tool for a two-phase flow requires a considerable computation power. This is the reason why we developed our tool on the PELICANS platform. PELICANS is a software platform developed by IRSN (Institut de Radioprotection et de Sûreté Nucléaire). It enables the development of complex and powerful simulation tools thanks to an efficient parallelization. Our numerical tool is already able to process 3D simulations.

VALIDATION TEST CASES

Single vortex problem

To validate our simulation tool, we ran lots of academic tests. In particular, we validated the interface transport with the Rider and Kothe configuration (Rider and Kothe, 1995) (stretching of a circle in a shear velocity field) that demonstrated how well the Level-Set method is able to handle the development of very thin filaments (Fig. 1).

If the grid is not accurate enough, the classical Level-Set method can show distorted results because of the mass loss. On the contrary, the Level-Set method combined with re-distancing algorithm tends to make the interface thicker because of a mass conservation problem.

To illustrate this phenomenon, Fig. 2 shows the percentage of mass loss (Level-Set method) or gain (Level-Set method with re-distancing algorithm) as a function of the simulation time for different grids.

We observe that the coarser the grid, the more we have problem with the mass conservation.
The static bubble test

The static bubble simulation is the first academic test to verify the convergence and the consistency of numerical methods for the treatment of discontinuities at the interface. The bubble interface is a circle. Initially, the velocity field is null. In the absence of gravitational forces, the theoretical solution of this test case is given by the Laplace law. Theoretically, no velocity field should arise during the simulation. Practically though, numerical errors, due to the scheme discretization and the treatment of discontinuities, create numerical velocities called spurious currents. They accumulate with time and tend to gather nearby the interface. In the static bubble simulation, capillary forces prevail. It is thus appropriate to verify if the surface tension term is correctly implemented. In this case, evaluation of the spurious currents amounts to evaluation of the error. Numerous parameter choices exist in the literature for the static bubble simulation (Vincent and Caltagirone, 2004), (Desjardins et al., 2008), (Smolianski, 2005), etc. We have tested several combinations of the parameters.

<table>
<thead>
<tr>
<th>Mesh</th>
<th>12</th>
<th>120</th>
<th>1200</th>
<th>12000</th>
<th>120000</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_a)</td>
<td>4.87 (\times) 10^{-5}</td>
<td>4.87 (\times) 10^{-5}</td>
<td>4.93 (\times) 10^{-5}</td>
<td>6.46 (\times) 10^{-5}</td>
<td>5.61 (\times) 10^{-5}</td>
</tr>
<tr>
<td>(\mathcal{L})</td>
<td>(5 \times 10^{-5})</td>
</tr>
</tbody>
</table>

Tab. 1: Dependence of parasitic currents on the Laplace number for a static bubble simulation on a 32 \(\times \) 32 mesh.

Some error results are given in Tab. 1. They have been obtained with the (Desjardins et al., 2008) parameters where

\[
C_a = \frac{u \mu}{\sigma}
\]

is the capillary number and

\[
\mathcal{L} = \frac{\sigma \rho D}{\mu^2}
\]

the Laplace number. These results show that the capillary number \(C_a \) remains quite constant despite the great changes of the Laplace number \(\mathcal{L} \).

The mesh convergence was studied with \(\mathcal{L} = 12000 \) and is given in the Tab. 2.

<table>
<thead>
<tr>
<th>Mesh</th>
<th>16 (\times) 16</th>
<th>32 (\times) 32</th>
<th>64 (\times) 64</th>
<th>128 (\times) 128</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_a)</td>
<td>7.99 (\times) 10^{-5}</td>
<td>3.22 (\times) 10^{-5}</td>
<td>1.51 (\times) 10^{-5}</td>
<td>5.54 (\times) 10^{-6}</td>
</tr>
</tbody>
</table>

Tab. 2: Dependence of parasitic currents on mesh spacing for a static bubble simulation with \(\mathcal{L} \) = 12000.

The here-above results allow us to conclude that the surface tension term is correctly implemented. The spurious currents, represented by the capillary number, remain very small and should not affect the accuracy of further simulations.

Poiseuille two-phase flow

We also used one-phase and two-phase Poiseuille tests (Vincent et al., 2004a) to verify the implementation of the viscous term. The Poiseuille two-phase flow is a horizontal stratified flow of two fluids in between two parallel walls. The gravity and the surface tension forces are neglected.

We have reached the stationary solution after a number of iterations starting from a zero velocity field. Fig. 3 shows the obtained velocity profile for the 31 \(\times \) 31 grid compared with the theoretical solution.

![Fig. 3: Level-Set simulation of the two-phase flow in between parallel walls on a 31 \(\times \) 31 grid. Comparison between numerical and theoretical solutions.](image)

The mesh convergence is given in Tab. 3, where \(\| e \|_{\infty} = \| u^{\text{theo}} - u^{\text{num}} \|_{\infty} \) and confirms the good results of Fig. 3.

<table>
<thead>
<tr>
<th>Mesh</th>
<th>17 (\times) 17</th>
<th>31 (\times) 31</th>
<th>63 (\times) 63</th>
</tr>
</thead>
<tbody>
<tr>
<td>(| e |_{\infty})</td>
<td>2.74 (\times) 10^{-2}</td>
<td>1.22 (\times) 10^{-2}</td>
<td>4.57 (\times) 10^{-3}</td>
</tr>
</tbody>
</table>

Tab. 3: Evolution of the error on velocity with different mesh spacing.

Validation tests conclusion

The results of the three academic tests presented above and the comparison with their analytic solution are satisfactory. They allow us to move forward with confidence to the application simulation : the phase inversion.

APPLICATION CASE : PHASE INVERSION IN A CLOSED BOX

After the validation process, we could finally carry out the application simulation. We focused on the processes of coalescence and breakage in a two-phase flow. We considered the inversion phase test (Vincent et al., 2004b), (Labourasse et al., 2007) as the most appropriate to describe both phenomena at the same time. This test consists in defining an initial state where a light fluid (oil) is immersed in a heavier one (water) in a closed box.

The typical non-dimensional parameters of this simulation are the Reynolds number

\[
Re = \frac{\rho_w u L}{2 \mu_w}
\]

and the Weber number

\[
We = \frac{\rho_w u^2 L}{2 \sigma}
\]
Fig. 4: Time evolution of the phase inversion problem (oil/water) in a closed box with $Re = 550$, $We = 537$ and for 64×64 grid.

where $u = \frac{\rho_w - \rho_o}{\rho_w} \sqrt{\frac{gL}{2}}$ is the characteristic velocity.

Fig. 5: Initial configuration of the oil/water phase inversion problem.

The two-phase flow is generated by means of a square oil inclusion (with a side equal to $L/2$) initially located in a bottom corner of a square cavity (with a side equal to $L = 1m$) filled of water (Fig. 5).

During the simulation, the light fluid (black in Fig. 6), under the gravity influence, tends to go up and distort. Some oil droplets escape in the continuous water phase, which illustrates the breakage phenomenon (Fig. 6 at time $T = 9.69s$). Then, oil reaches the top of the box enclosing some water drops. At final state, the coalescence effect has gathered most water drops and we obtain two continuous separated phases.

We carried out several simulations in the order to show the influence of the surface tension during the phase inversion test and to illustrate the accuracy of the simulations with regard to the grid size. We have thus tried the two sets of parameters reported in Tab. 4 and two different grids: 64×64 and 256×256.

<table>
<thead>
<tr>
<th>Density, ρ_w [kg/m3]</th>
<th>Viscosity, μ_w [Pa s]</th>
<th>Surface tension, σ [N/m]</th>
<th>Re</th>
<th>We</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0.2</td>
<td>0.045</td>
<td>550</td>
<td>537</td>
</tr>
<tr>
<td>1000</td>
<td>0.2</td>
<td>1.0</td>
<td>550</td>
<td>24</td>
</tr>
</tbody>
</table>

Tab. 4: Reynolds and Weber number of the two simulated phase inversion problems.

Firstly, Fig. 4 and Fig. 6 illustrate the simulation results respectively for a 64×64 grid and a 256×256 grid and both
Fig. 7: Time evolution of the phase inversion problem (oil/water) in a closed box with $Re = 550$, $We = 24$ and for 64×64 grid.

Fig. 8: Results of mass loss for the phase inversion problem $We = 537$.

For $Re = 550$ and $We = 537$, in the same manner, Fig. 7 and Fig. 9 illustrate the simulation results for the same grids but for $Re = 550$ and $We = 24$.

The results of the second simulation ($We = 24$) correspond to what we expected. A high value of surface tension strengthens the fluid cohesion and therefore limits the phenomenon of breakage during the phase inversion, meaning that drops are obviously larger when the surface tension is high.

Meanwhile, for both sets of parameters, we can see that the 64×64 grid simulation is not accurate enough to render the small scale phenomena during the inversion phase process.
Fig. 8 and Fig. 10 show the mass loss as a function of the physical time for both 64×64 and 256×256 grids and for respectively $\text{We} = 537$ and $\text{We} = 24$. For these simulations, the Level-Set method was used without re-distancing algorithm. We observe that the mass loss is greater for the 64×64 grid. For the 256×256 grid, we only loose 7% (Fig. 8) and 4% (Fig. 10) of the total initial mass, which is reasonable for further studies.

Remark:
We imposed no specific treatment at walls for the Level-Set function.

CONCLUSION

The results of two phase inversion tests have been presented in this paper. Each of them shows dynamics that look natural, and the comparison between the two of them, after modification of the Weber number, is consistent with physics principles.

We can conclude that the Level-Set method is relevant to track the interface in the context of direct numerical simulation of a two-phase flow. It allows us to consider the use of this method for the study of more complex physical processes.

The phase inversion that we have simulated can be described through three successive steps: the initial state with two continuous phases separated by a single interface, the dispersed phase and the final state with again two continuous phases. Thanks to this phase inversion problem we illustrated both breakage and coalescence phenomena.

These tests are thus a decisive step before we move toward the simulation of a real emulsion in which thousands of oil droplets are dispersed in a continuous water phase. The objective of such a simulation will be to evaluate the influence of the physical fluid properties on the time evolution of the separation front.

REFERENCES

Méthode Level-Set dans la modélisation des écoulements diphasiques

K. Voronetskaa, G. Vinaya, A. Wachsa, J.-P. Caltagironeb

a. IFP Énergies nouvelles (IFPEN), Départ. Mécanique des Fluides, 1-4 avenue de Bois-Préau, 92852 RUEIL-MALMAISON
b. Université Bordeaux 1, Institut d’Ingénierie Mécanique, Départ. Transferts Écoulements Fluides Énergetique (TREFLE), 16 avenue Pey-Berland, 33607 PESSAC

Résumé :
Dans l’industrie pétrolière, les écoulements de fluides non-miscibles sont fréquemment rencontrés, notamment dans le cadre du processus de séparation en production. Le travail présenté ici est consacré à la simulation d’écoulement diphasique à phase dispersée. Pour décrire précisément l’interface nous avons choisi la méthode Level-Set. Les résultats de suivi d’interface ont ainsi été améliorés par l’algorithme de réinitialisation. La résolution des équations de Navier-Stokes incompressibles a été faite à l’aide de la méthode de décomposition d’opérateurs. Enfin, pour ce qui concerne le traitement des valeurs discontinues à travers l’interface, nous avons choisi la méthode CSF. Des simulations 2D parallèles appelées ”inversion de phase” ont été réalisées pour étudier en détail le processus de séparation.

Abstract :
In the petroleum industry flows of non-miscible fluids are frequently met, especially for the separation process in production. The presented work is dedicated to the simulation of two-phase dispersed flow. The Level-Set method was chosen to describe precisely the interface and the interactions between phases. Incompressible Navier-Stokes equations are solved thanks to the Operator-Splitting method. It allowed us to split the problem into three sub problems (advection, diffusion and degenerated Stokes) and to use a specific resolution method for each of them. When it comes to the processing of discontinuity at the interface, we chose the CSF method. It is a global method since it is based on the update of the whole set of data that show a shift at the interface. 2D parallel simulations called ”phase inversion” were performed to study in detail the separation process.

Mots clefs : level-set ; écoulement diphasique ; inversion de phase

1 Introduction
L’étude des écoulements polyphasiques est un sujet de recherche fondamental en mécanique des fluides, dont les applications industrielles sont très nombreuses. L’industrie pétrolière porte un intérêt particulier à ce genre d’écoulement, notamment dans le cadre du processus de séparation en production. Au vu de la complexité de l’écoulement polyphasique qui a lieu au cours de ce processus, nous l’avons abordé par une approche numérique afin d’étudier précisément la zone dite d’émulsion dense. Cette zone représente l’écoulement d’une phase continue dans laquelle de nombreuses inclusions dispersées interagissent. S’y produisent en effet les principaux mécanismes physiques qui gouvernent les phénomènes de séparation, tels que la coalescence ou la rupture.

Nous ne nous sommes pas intéressés dans cette étude aux événements macroscopiques qui décrivent l’écoulement dans un séparateur industriel. C’est au contraire à l’échelle de la goutte que nous avons étudié le processus de séparation huile/eau de la zone d’émulsion dense, en considérant qu’un tel modèle nous permettra d’évaluer l’influence de cette zone particulière sur l’hydrodynamique de l’écoulement.
Ainsi le but principal de ce travail a été de développer un code de simulation numérique directe capable de modéliser un écoulement diphasique liquide/liquide pour étudier en détails les effets de coalescence/rupture entre les gouttes. Pour valider notre travail, nous avons choisi le test d’inversion de phase.

2 Modélisation d’un écoulement diphasique

Pour la modélisation d’un tel type d’écoulement, le choix d’une méthode de suivi d’interface bien adaptée et le développement d’un solveur des équations de Navier-Stokes incompressibles pour calculer le champ de vitesse sont indispensables. Une méthode de couplage entre ces deux solveurs doit être implémentée pour prendre en compte les quantités discontinues à travers l’interface.

Pour le type d’écoulement que nous souhaitons étudier, les deux fluides sont considérés comme immiscibles et newtoniens. Ainsi les fluides sont supposés homogènes, c’est-à-dire que leur masse volumique et leur viscosité sont constantes dans chaque phase.

Parmi les méthodes de suivi d’interface existantes nous avons porté un intérêt particulier pour les méthodes qui sont capables de suivre les forts changements de topologie interfaciale. C’est finalement la méthode Level-Set [5] qui a été choisie pour décrire précisément l’interface. Son principe est de définir une fonction scalaire dont la courbe de niveau zéro est l’interface que l’on cherche à décrire. La fonction Level-Set peut ainsi être perçue comme une variété infinie d’iso-contours, un iso-contour étant défini par l’ensemble des points à une distance donnée de l’interface. Lorsque la distance est nulle, l’iso-contour est l’interface elle-même. Pour tout point de l’espace, le signe de la fonction permet de savoir immédiatement de quel côté de l’interface se trouve le point considéré. Grâce à cette définition de la fonction Level-Set les processus physiques de coalescence ou de rupture sont traités naturellement.

Par ailleurs, l’idée directrice de la définition de la fonction Level-Set est l’accès direct aux caractéristiques géométriques locales de l’interface soit la normale \(n \) et la courbure \(\kappa \) (2.1).

\[
\begin{align*}
 n &= \frac{\nabla \phi}{\| \nabla \phi \|} \\
 \kappa &= \nabla \cdot \left(\frac{\nabla \phi}{\| \nabla \phi \|} \right) = \nabla \cdot n
\end{align*}
\]

L’équation de transport (2.2) est associée à la méthode Level-Set pour décrire l’évolution spatio-temporelle de l’interface dans un champ de vitesse donné \(u \).

\[
\frac{\partial \phi}{\partial t} + (u \cdot \nabla) \phi = 0
\]

La méthode Level-Set de suivi d’interface a été couplée à une méthode de décomposition d’opérateurs [3] pour la résolution des équations de Navier-Stokes incompressibles (2.3). Cette méthode nous a permis de séparer notre problème en trois sous-problèmes (advection, diffusion et Stokes dégénéré) et d’appliquer une méthode de résolution correspondante à chacun d’entre eux.

\[
\begin{align*}
 \rho(\phi) \left(\frac{\partial u}{\partial t} + (u \cdot \nabla) u \right) &= -\nabla p + \nabla \cdot (2\mu(\phi)D) - \sigma \kappa(\phi)\delta_x(\phi)\nabla \phi + \rho(\phi)g \\
 \nabla \cdot u &= 0
\end{align*}
\]

C’est le fait de considérer les fluides comme immiscibles qui nous a amené plus haut au concept d’interface. La zone de séparation entre les deux fluides devient une zone de très faible épaisseur largement négligeable dans le cas de notre étude. Cette zone de séparation représente une interface à travers laquelle les propriétés physiques des deux fluides changent brutalement. Pour traiter les variations des propriétés physiques dans la zone de séparation nous avons défini la masse volumique \(\rho(\phi) \) et la viscosité \(\mu(\phi) \) selon l’équation (2.4).

\[
\begin{align*}
 \rho(\phi) &= \rho_1 + (\rho_2 - \rho_1) H_x(\phi) \\
 \mu(\phi) &= \mu_1 + (\mu_2 - \mu_1) H_x(\phi)
\end{align*}
\]
où $H_e(\phi)$ est une forme régularisée de la fonction Heaviside et ε est le paramètre de lissage qui définit l’épaisseur fictive de l’interface [9]. Cette épaisseur est fixée à $\frac{3}{2}\Delta x$, où Δx est le pas d’espace.

$$H_e(\phi) = \begin{cases}
0 & \phi < -\varepsilon \\
\frac{1}{2} \left(1 + \frac{\phi}{\varepsilon} + \frac{1}{\pi} \sin \left(\frac{\pi \phi}{\varepsilon} \right) \right) & |\phi| \leq \varepsilon \\
1 & \phi > \varepsilon
\end{cases}$$ (2.5)

Le terme de tension de surface a quant à lui été rajouté en tant que terme source dans l’équation de conservation de quantité de mouvement (2.3) selon le modèle CSF [1] : $\sigma \kappa(\phi) \delta_e(\phi) \nabla \phi$ où σ est le coefficient de la tension de surface, κ la courbure et $\delta_e(\phi)$ la fonction Dirac régularisée définie selon (2.6).

$$\delta_e(\phi) = \frac{dH_e(\phi)}{d\phi} = \begin{cases}
0 & |\phi| > \varepsilon \\
\frac{1}{2\varepsilon} \left(1 + \cos \left(\frac{\pi \phi}{\varepsilon} \right) \right) & |\phi| \leq \varepsilon
\end{cases}$$ (2.6)

3 Discrétisation par la méthode des Volumes Finis

La discrétisation spatiale consiste à diviser le domaine de calcul par un nombre fini de volumes. À chaque variable est associé un volume de contrôle centré sur lequel sont intégrées les équations à résoudre. Nous avons utilisé une grille décalée structurée de type MAC pour la disposition 2D des variables vitesse, pression et fonction Level-Set sur le maillage.

Remarque : Le schéma WENO5 est un schéma du 5ème ordre. Il est basé sur une approximation de type ENO à trois points discrets.

Le terme visqueux a été rajouté dans le système linéaire de manière totalement implicite. La discrétisation de la divergence de la contrainte associée aux forces visqueuses $\nabla \cdot (2\mu(\phi) D)$, a été effectuée en utilisant le schéma centré du 2ème ordre [9].

L’algorithme général de modélisation d’un écoulement diphasique est présenté ci-dessous :

- Initialisation de l’interface grâce à la fonction Level-Set ϕ.
- Pour chaque pas de temps ($n = 1, 2, \ldots$) :
 1. Calcul des propriétés géométriques de l’interface ainsi que de la masse volumique $\rho(\phi)$ et de la viscosité $\mu(\phi)$.
 2. Résolution de Navier-Stokes avec l’algorithme de décomposition d’opérateurs :
 - Résolution du problème d’advection-diffusion. C’est à cette étape que les termes sources de gravité et de tension de surface sont assemblés ;
 - Résolution du problème de Stokes dégénéré (algorithme d’Uzawa).
 3. Résolution de l’équation de transport de la fonction Level-Set en utilisant la vitesse calculée après l’étape 2.
 - Mise à jour du champ de Level-Set.

Pour la mise en œuvre d’un outil de simulation numérique directe d’un écoulement diphasique, une puissance de calcul importante est requise. C’est la raison pour laquelle, nous avons développé notre outil de modélisation sous la plateforme PELICANS [6].

PELICANS est une plateforme logicielle développée par l’IRSN (Institut de Radioprotection et de Sureté Nucléaire). Elle permet le développement d’outils de simulation complexes et puissants grâce à une parallélisation des calculs efficace.
L’outil numérique que nous avons mis en œuvre est d’ores et déjà capable de procéder à des simulations en 3D.

4 Cas d’application : inversion de phase

Ensuite, nous nous sommes intéressés aux processus de coalescence et de rupture entre les gouttes dans un écoulement diphasique. Le test d’inversion de phase d’huile dans l’eau [4], [13] nous a paru le plus approprié pour décrire ces deux phénomènes en même temps. Ce test consiste à définir un état initial dans lequel un fluide léger (huile) est noyé au fond d’un fluide plus lourd (eau) dans une boîte totalement fermée.

![Fig. 1 – Évolution temporelle de l’inversion de phase huile/eau dans une boîte fermée pour le maillage 256 × 256, Re = 550.](image)

Les paramètres adimensionnels caractéristiques de cette simulation sont le nombre de $Re = \frac{\rho_w u L}{\mu_w}$ et le nombre de $We = \frac{\rho_w u^2 L^2}{2\sigma}$, où $u = \frac{\rho_w - \rho_o}{\rho_w} \sqrt{\frac{g L}{2}}$ est la vitesse caractéristique, ρ_w et ρ_o les densités...
de la phase d’eau et d’huile respectivement, μ_w la viscosité de la phase d’eau, L la taille caractéristique du domaine et σ le coefficient de la tension de surface.

L’état initial de la simulation se compose d’une boîte carrée (de côté L) emplie d’eau au fond à gauche de laquelle se trouve un carré d’huile de côté $L/2$.

L’huile (en noir sur la Fig. 1 (a) et (b)), plus léger et soumis à la gravité, a tendance à monter en se déstructurant, laissant échapper quelques gouttes dans la phase continue, ce qui correspond au phénomène de rupture (Fig. 1 (a) à l’instant $T = 9.69s$). Ensuite, l’huile se place au sommet de la boîte piégeant quelques gouttes d’eau dans l’huile. A l’état final, la majorité des gouttes d’eau ont coalescé et sont redescendues dans la phase d’eau inférieure jusqu’à obtenir un état complètement séparé.

Nous avons réalisé plusieurs simulations afin de mettre en évidence l’influence de la tension de surface et afin d’illustrer le rôle joué par la finesse du maillage sur la précision de la simulation. Nous présentons ici les résultats pour un maillage de taille 256×256, pour deux nombres de Weber : Fig. 1 (a) $We = 537$, Fig. 1 (b) $We = 24$. Le nombre de Reynolds est le même pour les deux simulation $Re = 550$.

La différence entre les résultats graphiques, au regard du nombre de Weber choisi, est bien cohérente. Elle confirme qu’une valeur élevée de la tension de surface renforce la cohésion des fluides, ce qui réduit les phénomènes de rupture et donne donc lieu à la formation de gouttes de plus grande dimension.

Notons que nous ne présentons pas ici les images acquises pour un maillage de taille 64×64 car elles affichaient une dynamique d’écoulement plus grossière et les phénomènes de petite échelle que nous observons sur le maillage 256×256 n’apparaissaient pas. L’influence de la résolution est donc manifeste, en particulier sur les phénomènes de coalescence et de rupture.

![Fig. 2 – Évolution de la perte de masse d’huile au cours du temps.](image)

Toutefois, pour appuyer cette analyse, nous proposons la Fig. 2 qui indique l’évolution de la masse d’huile au cours du temps pour les deux simulations précédentes ainsi que pour les simulations équivalentes avec un maillage 64×64. Alors que la perte de masse par rapport à l’état initial n’excède pas 7% pour le maillage 256×256, ce qui reste raisonnable pour envisager nos travaux futurs, elle était nettement plus importante pour le maillage 64×64.

Remarque : Aucun traitement spécifique n’a été réalisé à la paroi pour la fonction Level-Set.

5 Conclusions et perspectives

Les résultats issus de deux tests d’inversion présentés dans ce document sont satisfaisants. Chacun considéré indépendamment présente une dynamique qui semble naturelle et la comparaison entre les deux, après modification du nombre de Weber, est cohérente avec les principes de la physique.
Nous en concluons que la méthode Level-Set, employée dans le cadre de la simulation numérique directe (DNS) d’un écoulement diphasique, est appropriée et pertinente pour le suivi d’interface. Cela nous permet d’envisager l’utilisation de la méthode pour l’étude de processus physiques plus complexes.

L’inversion de phase que nous avons simulée présente trois étapes successives : l’état initial, avec deux phases continues séparées par une interface, puis une phase dispersée, pour enfin revenir à l’état final, à deux phases continues. Nous avons ainsi illustré les phénomènes à la fois de coalescence et de rupture de gouttes.

Ces tests constituent donc une étape déterminante avant de nous orienter vers la simulation d’une véritable émulsion dans laquelle des milliers de gouttes d’huile seront dispersées dans une phase continue d’eau. L’objectif de ce type de simulation sera d’évaluer l’influence des propriétés physiques des fluides sur l’évolution temporelle du front de séparation.

Références
Résumé

Dans l'industrie du pétrole et des moteurs, les écoulements de fluides non-miscibles sont fréquemment rencontrés : écoulements d'hydrocarbures dans les conduites, séparation en production, injection de carburant dans les moteurs, procédés de raffinage, etc.

Pour modéliser ce type d'écoulement, deux approches sont possibles. Soit l'écoulement est décrit de façon macroscopique et les phénomènes locaux (rupture et coalescence des gouttes, glissement des phases, etc.) sont modélisés à l'aide de lois de fermeture analytiques ou empiriques. Soit l'écoulement est modélisé de manière directe à l'échelle de la goutte et on s'attache à décrire précisément l'interface et les interactions entre les phases.

C'est cette dernière approche que nous avons proposé d'adopter pour étudier des écoulements à phase dispersée liquide-liquide, et plus particulièrement les phénomènes de rupture et coalescence, collision ou déformation de gouttes.

Ainsi, le but principal de ce travail de thèse a été le développement d'un code de simulation numérique directe capable de modéliser un écoulement diphasique liquide-liquide, afin d'étudier en détail les effets de coalescence et de rupture entre les gouttes.

Ce travail a nécessité l’utilisation d’une technique de suivi d’interface appropriée et le développement d’un solveur des équations de Navier-Stokes incompressible pour calculer le champ de vitesse, ainsi qu’une méthode de couplage entre ces deux solveurs pour la simulation des écoulements diphasiques.

Notre outil numérique a été validé sur de nombreux cas tests académiques et appliqué à l'étude du processus de séparation liquide-liquide.

Abstract

The flow of immiscible fluids is a frequent issue in the petroleum industry: hydrocarbon in pipelines, separation process for production, fuel injection in engines, refinery treatment processes, etc.

There are two possible approaches to model this type of flow. In the first one, the flow is described macroscopically. In this case, local phenomena (breakage or coalescence of droplets, phase slip, etc.) are modeled thanks to analytic closure laws or empiric laws. In the second approach, the flow is simulated indirectly on a scale of droplet and we want to describe precisely the interface and the interactions between phases.

We propose here to consider the second method to study liquid/liquid dispersed flows and especially the phenomena of breakage or coalescence and collision or distortion of the droplets.

Thus, the main purpose of this work was the development of a direct numerical simulation code that is capable to model a liquid-liquid two-phase flow, in order to study in detail the effects of droplets coalescence and breakage.

To model a two-phase flow, it is necessary to choose an appropriate interface tracking method and to develop a solver for Navier-Stokes incompressible equations to compute the velocity and pressure values. Also, a coupling method that is able to handle the discontinuous quantities at the interface has to be implemented.

Our numerical tool has been validated on numerous academic test cases and applied to study the process of liquid-liquid separation.