Mécanismes Cross-Layer pour le streaming vidéo dans les réseaux WIMAX

Cross-Layer Mechanisms for video streaming in WIMAX Networks

JURY

Toufik Ahmed Institut Polytechnique de Bordeaux Co-Directeur de thèse
Francine Krief Institut Polytechnique de Bordeaux Co-Directeur de thèse
Djamal Meddour Senior Expert, France Telecom Responsable Industriel
André-Luc Beylot ENSEEIHT Toulouse Rapporteur
Tijani Chahed Telecom Paris Sud Rapporteur
Sidi-Mohamed Senouci ISAT, Université de Bourgogne Président de jury
Abstract

Driven by the increasing demand for multimedia services in broadband Internet networks, WIMAX technology has emerged as a competitive alternative to the wired broadband access solutions. The IEEE 802.16 is a solution that provides high throughput by ensuring a satisfactory QoS. In particular, it is suitable for multimedia applications that have strict QoS constraints. However, the users’ heterogeneity and diversity in terms of bandwidth, radio conditions and available resources, pose new deployment challenges. Indeed, multimedia applications need to interact with their environment to inform the access network about their QoS requirements and dynamically adapt to changing network conditions.

In this context, we propose two solutions for video streaming over 802.16 networks based on Cross-Layer approach. We are interested in both unicast and multicast transmissions in uplink and downlink of one or more WIMAX cells.

First, we proposed an architecture that enables Cross-Layer adaptation and optimization of video streaming based on available resources. We defined the entity CLO (Cross-Layer Optimizer) that takes benefits from service flow management messages, exchanged between BS and SS, at the MAC level, to determine the necessary adaptations / adjustment to ensure optimal delivery of the application. Adaptations occur at two epochs, during the admission of the video stream and during the streaming phase. The performance analysis, performed through simulations, shows the effectiveness of the CLO to adapt in a dynamic way, the video data rate depending on network conditions, and thus guarantee an optimal QoS.

Second, we proposed a solution that enables IP multicast video delivery in WIMAX network. This solution allows finding the compromise between the diversity of end-user requirements, in terms of radio conditions, modulation schemes and available resources, along with the SVC hierarchy video format, to offer the best video quality even for users with low radio conditions. Indeed, we define a multicast architecture that allows each user to get a video quality proportionally to its radio conditions and its available bandwidth. Towards this end, several IP multicast groups are created depending on the SVC video layers. Subsequently, our solution allows optimizing the use of radio resources by exploiting the different modulations that can be selected by the end-users.

Key words: Cross-Layer adaptation, Quality of Service, IEEE 802.16 Wireless Networks, video adaptation, SVC hierarchical video coding, multicast, adaptive modulation.
Résumé

Poussé par la demande croissante de services multimédia dans les réseaux Internet à haut débit, la technologie WIMAX a émergé comme une alternative compétitive à la solution filaire d'accès à haut débit. L'IEEE 802.16 constitue une solution qui offre des débits élevés en assurant une qualité de service (QoS) satisfaisante. En particulier, elle est adaptée aux applications multimédia qui ont des contraintes de QoS à satisfaire. Cependant, avec la présence d'utilisateurs hétérogènes qui ont des caractéristiques diverses en termes de bande passante, de conditions radio et de ressources disponibles, de nouveaux défis posés doivent être résolus. En effet, les applications multimédia doivent interagir avec leur environnement pour informer le réseau d'accès de leurs besoins en QoS et s'adapter dynamiquement aux variations des conditions du réseau.

Dans ce contexte, nous proposons deux solutions pour la transmission des flux vidéo sur les réseaux 802.16 sur la base de l'approche Cross-layer. Nous nous intéressons à la fois à la transmission unicast et multicast sur le lien montant et descendant d'une ou plusieurs cellules WIMAX.

Premièrement, nous proposons une architecture Cross-Layer qui permet l'adaptation et l'optimisation du streaming vidéo en fonction des ressources disponibles. Nous avons défini une entité CLO (Cross-Layer Optimizer) qui exploite des messages de gestion des flux de service, échangés entre BS et SS, au niveau MAC, pour déterminer l'adaptation nécessaire et optimale afin d'assurer le bon fonctionnement de l'application. Les adaptations se produisent en deux temps, lors de l'admission du flux et au cours de la session de streaming. L'analyse des performances, par simulations, de notre solution montre l'efficacité du CLO à adapter, d'une façon dynamique, le débit vidéo en fonction des conditions du réseau afin d’assurer une QoS optimale.

Deuxièmement, nous proposons une solution de streaming multicast des flux vidéo dans les réseaux WIMAX. Cette solution permet de trouver un compromis entre la diversité des clients, en termes de conditions radio, de schémas de modulation et de ressources disponibles, ainsi que le format de codage vidéo hiérarchique SVC, pour offrir la meilleure qualité vidéo y compris pour les clients ayant de faibles conditions radio. En effet, cette solution permet à chaque utilisateur d'obtenir une qualité vidéo proportionnellement à ses conditions radio et à sa bande passante disponible. Pour atteindre cet objectif, plusieurs groupes multicast sont formés par couches vidéo SVC. Cette solution permet d'optimiser davantage les ressources radio et ainsi d'augmenter la capacité globale du système.

Mot clés: Adaptation Cross-Layer, qualité de service, réseaux sans fil 802.16, adaptation vidéo, codage vidéo hiérarchique SVC, multicast, modulation.
À mes chères et tendres parents Mabrouk et Mabouba,
Votre soutien, votre amour et vos prières sont le secret de ma réussite, que Dieu vous garde pour moi et vous prête une longue vie pleine de santé et de prospérité.

À ma sœur Asma et mes frères Seifeddine et Moubamed, merci de m'avoir soutenu tout au long de cette aventure, que Dieu vous préserve.

À ma chère épouse Mouna, merci d'être là quand il fallait, que Dieu te protège et te guide vers le droit chemin.

À tous mes amis
À tous ceux que j'aime
À tous ceux qui m'aiment…
Remerciements

Je tiens tout d'abord à remercier vivement Monsieur André Luc Beylot et Monsieur Tijani Chahed d'avoir accepter d'être rapporteurs de mes travaux de thèse.

Je remercie bien évidemment les professeurs Francine Krief et Toufik Ahmed d'avoir codiriger cette thèse. Merci également à Djamal-Eddine Meddour d'avoir co-encadrer cette thèse. Ces années de travail en commun m'ont beaucoup appris scientifiquement et humainement.

Les débuts de mes travaux sur les réseaux WIMAX remontent à l'année 2007 et ont été possibles grâce à mon intégration au sein de l'équipe M2I/R2A et ensuite à l'équipe TPN/FAME à France Telecom R&D-Orange Labs. Merci à Yvon Gourhant et Ibrahim Houmed qui m'ont accueilli dans leurs équipes.

Merci aussi à Tlich pour les discussions enrichissantes que nous avons eues et à tous ceux, habitués ou occasionnels des pauses café, pour les bons moments partagés.

Je remercie également Moez Jerbi, Mohamed Mahdi et Ahmed Ben Nacef mes colocataires avec qui j'ai partage beaucoup durant ces trois années de thèse. Merci aussi à tous mes amis de Lannion et d'ailleurs (Tlich, Slim, Dhafer, Abderrahman, Meftah, Med Tounsi, Imed, Chedly, Adel, Boubakkeur et tant d'autres que je ne nommerai pas par manque de place et de peur de ne pas être exhaustif).

Je profite également de ce moment privilégié pour remercier mes chères parents, ma sœur et mes frères pour leur soutien sans faille, leurs encouragements et sans qui rien n'aurait été possible.

Enfin, je tiens à remercier Mouna pour sa présence et son soutien indéfectible même dans les moments difficiles. Elle a su m'accompagner dans cette grande expérience scientifique mais surtout personnelle qu'est une thèse.
Table des matières

Abstract .. 5
Résumé ... 7
Dédicace ... 9
Remerciements ... 11
Table des matières ... 13
Liste des figures ... 17
Liste des tableaux .. 19
Liste des acronymes .. 21

Chapitre 1 INTRODUCTION ... 1
 1.1 Motivation ... 1
 1.2 Objectifs et contributions ... 2
 1.3 Organisation de la thèse ... 3

Chapitre 2 ETAT DE L’ART ... 5
 2.1 Evolution des systèmes cellulaires ... 5
 2.2 L’IEEE 802.16-2004 ... 7
 2.2.1 Modèle de référence .. 8
 2.2.2 Couche MAC .. 9
 2.2.2.1 Le Mode PMP ... 9
 2.2.2.2 Le Mode mesh ... 10
 2.2.2.3 Adressage et connexions ... 12
 2.2.3 Couche Physique ... 12
 2.2.3.1 Modulation et codage du canal ... 12
 2.2.3.2 Le slot OFDMA ... 13
 2.2.3.3 Structure de la trame ... 13
 2.2.4 Gestion de la QoS .. 15
 2.2.4.1 Ajout d’un flux de service ... 16
 2.2.4.2 Modification d’un flux de service .. 17
 2.2.4.3 Suppression d’un flux de service .. 18
Table des matières

2.2.4.4 Les classes de QoS ... 20
2.2.4.5 Les techniques de demande de bande passante 22

2.3 L’ordonnancement dans les réseaux IEEE 802.16 24
2.3.1 Les ordonnanceurs classiques utilisés dans WIMAX 24
 2.3.1.1 Ordonnanceurs systématiques ... 24
 2.3.1.2 Ordonnanceurs prenant en compte les conditions du canal radio 25
2.3.2 Les ordonnanceurs spécifiquement proposés pour le WIMAX 26
 2.3.2.1 Ordonnanceurs proposés pour une classe de service spécifique .. 26
 2.3.2.2 Ordonnanceurs proposés pour plusieurs classes de service QoS ... 26

2.4 IEEE 802.16j (Mobile Multi hop Relay) .. 28
 2.4.1 Introduction ... 28
 2.4.2 L’initiative et la motivation de standardisation de l’IEEE 802.16j 28
 2.4.3 Spécifications de l’IEEE 802.16j ... 28
 2.4.4 Les modes de relais ... 28
 2.4.5 Spécifications de la couche PHY : structure de la trame 30
 2.4.6 Spécifications de la couche MAC .. 31
 2.4.6.1 Les modèles de transmission ... 31
 2.4.6.2 Routage et gestion des routes ... 31
 2.4.6.3 Procédure d’entrée en réseau .. 32

2.5 Les applications de streaming vidéo ... 33
 2.5.1 Les protocoles multimédia .. 33
 2.5.2 Les standards de codage vidéo et le codage vidéo hiérarchique ... 34
 2.5.3 L’adaptation de la QoS pour la transmission vidéo 35

2.6 Les mécanismes Cross-Layer pour les réseaux WIMAX 37
 2.6.1 Le concept du Cross-layer ... 37
 2.6.2 La communication dans les architectures Cross-Layer 38
 2.6.3 Les approches du Cross-Layer ... 38

2.7 Conclusion .. 41

Chapitre 3 Optimisation Cross-Layer pour la transmission vidéo unicast 43
 3.1 Introduction .. 43
 3.2 Solutions Cross-Layer pour le streaming vidéo dans les réseaux WIMAX 45
 3.3 Topologies de références ... 48
 3.3.1 Architecture distribuée .. 48
 3.3.2 Architecture Centralisée .. 48
 3.4 Contexte générale ... 50
 3.4.1 Gestion de la QoS et des flux de services dans les réseaux WIMAX 50
 3.5 Architecture proposée ... 51
 3.5.1 Proposition d’une architecture Cross-Layer 51
Table des matières

3.5.2 Algorithme Cross-Layer ... 52
 3.5.2.1 Collecte des indicateurs ... 52
 3.5.2.2 Adaptation et modification ... 52
3.5.3 Illustration de l’approche ... 53
 3.5.3.1 SS envoie une requête DSA ... 53
 3.5.3.2 BS envoie une requête DSC ... 54
 3.5.3.3 SS envoie une requête DSC ... 55
3.6 Evaluation de performances .. 56
 3.6.1 Environnement de simulation ... 56
 3.6.2 Résultats de simulations ... 57
 3.6.2.1 Scénario 1 : conditions normales .. 57
 3.6.2.2 Scénario 2 : adaptation au contrôle d’admission 57
 3.6.2.3 Scénario 3 : adaptation durant le streaming vidéo : le débit diminue 59
 3.6.2.4 Scénario 4: adaptation durant le streaming vidéo : le débit augmente ... 61
3.7 Conclusion ... 62

Chapitre 4 Transmission Multicast SVC Dans les Réseaux WIMAX 65
 4.1 Introduction .. 65
 4.2 Motivation ... 66
 4.3 Etat de l’art des solutions de vidéo streaming multicast 67
 4.4 Solutions et architectures proposées ... 71
 4.4.1 Création des groupes multicast avec codage SVC 71
 4.4.2 Transmission multicast dans les réseaux WIMAX 74
 4.5 Les architectures multicast SVC proposées 75
 4.5.1 Mode de modulation simple ... 77
 4.5.2 Mode de Modulation Multiple .. 78
 4.5.3 Mode de superposition de codage ... 79
 4.6 Environnement et résultats de l’évaluation de performance 81
 4.6.1 Environnement ... 82
 4.6.2 Résultats d’évaluation de performances 83
 4.6.2.1 Mode de codage simple .. 86
 4.6.2.2 Mode multi-modulations ... 87
 4.6.2.3 Mode de superposition de codage 88
 4.7 Conclusion .. 89

Chapitre 5 CONCLUSION ... 91

Références ... 93

Liste des publications ... 99

Annexe ... 101
Table des matières
Liste des figures

Figure 2-1 : Les standards IEEE 802.16 ... 7
Figure 2-2 : Modèle de référence [1] .. 8
Figure 2-3 : Architecture PMP ... 9
Figure 2-4 : Architecture MESH .. 11
Figure 2-5 : Structure de la trame OFDMA .. 15
Figure 2-6 : Ajout d’un flow de service (initié par une SS) 16
Figure 2-7 : Ajout d’un flow de service (initié par une BS) 17
Figure 2-8 : Modification d’un flow de service (initié par une SS) 19
Figure 2-9 : Modification d’un flux de service (initié par une BS) 19
Figure 2-10 : Suppression d’un flux de service (initié par une SS) 20
Figure 2-11 : Suppression d’un flux de service (initié par une BS) 20
Figure 2-12 : Structure de la trame en mode relais non transparent vue par la BS [3] 30
Figure 2-13 : Structure de la trame en mode relais non transparent vue par la RS [3] 30
Figure 3-1 : Architecture d’optimisation Cross-Layer [84] 46
Figure 3-2 : Architecture distribuée .. 49
Figure 3-3 : Architecture centralisée ... 49
Figure 3-4 : Topologie d’étude .. 51
Figure 3-5 : Optimisateur Cross-Layer entre couches MAC et Application 52
Figure 3-6 : SS envoie le message : DSA Request ... 54
Figure 3-7 : BS envoie le message: DSC Request ... 55
Figure 3-8 : SS envoie le message: DSC Request ... 55
Figure 3-9 : architecture de simulation .. 56
Figure 3-10 : Débits vidéo pour une qualité élevée, Moyenne et faible 58
Figure 3-11 : Débit vidéo de qualité élevée réduit à qualité moyenne lors de l’admission ... 59
Figure 3-12 : Débit vidéo de qualité élevée réduit à qualité faible lors de l’admission 59
Figure 3-13 : Débit vidéo de qualité élevée interrompu durant la transmission 60
Figure 3-14 : Débit vidéo de qualité élevée réduit à moyenne durant la transmission ... 60
Figure 3-15 : Débit vidéo de qualité élevée réduit à qualité faible durant la transmission ... 61
Figure 3-16 : Débit vidéo de qualité faible amélioré à qualité élevée durant la transmission ... 62
Figure 4-1 : SVSoA : streaming vidéo multicast avec ALC [90] 68
Liste des figures

Figure 4-2 : MDC : Formations des couches vidéo [91] ... 70
Figure 4-3 : Formations des paquets MDC [91] ... 70
Figure 4-4 : Les niveaux Hiérarchiques SVC .. 72
Figure 4-5 : Groupes Multicast SVC .. 73
Figure 4-6 : Architecture WIMAX multi-cellules (Multi-BS) ... 76
Figure 4-7 : Cas d’une seule cellule WIMAX .. 77
Figure 4-8 : Superposition de codage dans les réseaux cellulaires [94] .. 80
Figure 4-9 : Topologie avec plusieurs cellules .. 84
Figure 4-10 : scénario : SSs identiques dans différentes cellules... 84
Figure 4-11 : Topologie de simulation avec une seule cellule. ... 85
Figure 4-12 : Scénario: Mode Classique... 86
Figure 4-13 : Scénario : Mode Multi-Modulations .. 87
Figure 4-14 : Scenario : Superposition de codage .. 88
Figure A-1 : Format d'un MAC PDU .. 101
Figure A-2 : Format d'entête générique ... 101
Figure A-3 : Format d'entête « Bandwidth Request »... 102
Figure A-4 : Obtention de la synchronisation en lien descendant.. 106
Figure A-5 : Maintien de la synchronisation en lien descendant... 107
Figure A-6 : Obtention des paramètres UL ... 108
Figure A-7 : Maintien des paramètres UL ... 109
Figure A-8 : Format de l'entête du Relay MAC PDU avec payload .. 110
Figure A-9 : Format de l'entête du Relay MAC PDU sans payload .. 111
Figure A-10 : Format de l'entête BR du Relay Station ... 111
Liste des tableaux

Tableau 2-1. MCS selon SNR côté récepteur (802.16 - OFDMA) [1] .. 13
Tableau 2-2. Comparaison entre mode de relais transparent et non transparent 29
Tableau 3-1. Correspondance entre QoS IP et QoS 802.16 [83] .. 45
Tableau 3-2. Qualité vidéo élevée, moyenne et faible ... 56
Tableau 3-3. Paramètres de simulation pour la couche PHY de l'IEEE 802.16............... 56
Tableau 3-4. Paramètres du trafic en background pour chaque scenario 58
Tableau 4-1. Paramètres de simulation pour la couche PHY de l'IEEE 802.16............... 82
Tableau 4-2. Paramètres de la vidéo SVC ... 83
Tableau 4-3. Scenario : SS identiques dans différentes cellules ... 84
Tableau 4-4. Scenario : Différentes SS dans la même cellule .. 85
Tableau 4-5. Nombre de couches vidéo reçues ... 89
Liste des acronymes

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3GPP</td>
<td>Third Generation Partnership Project</td>
</tr>
<tr>
<td>AD</td>
<td>Active Dropping</td>
</tr>
<tr>
<td>ADSL</td>
<td>Asymmetric Digital Subscriber Line</td>
</tr>
<tr>
<td>AF</td>
<td>Assured Forwarding</td>
</tr>
<tr>
<td>ALC</td>
<td>Asynchronous Layered Coding</td>
</tr>
<tr>
<td>ALM</td>
<td>Application Level Multicast</td>
</tr>
<tr>
<td>AMC</td>
<td>Adaptive Modulation and Coding</td>
</tr>
<tr>
<td>APP</td>
<td>Application</td>
</tr>
<tr>
<td>ARQ</td>
<td>Automatic Repeat reQuest</td>
</tr>
<tr>
<td>AVC</td>
<td>Advanced Video Coding</td>
</tr>
<tr>
<td>BE</td>
<td>Best Effort</td>
</tr>
<tr>
<td>BL</td>
<td>Base Layer</td>
</tr>
<tr>
<td>BPSK</td>
<td>Binary Phase-Shift Keying</td>
</tr>
<tr>
<td>BS</td>
<td>Base Station</td>
</tr>
<tr>
<td>BW</td>
<td>Bandwidth</td>
</tr>
<tr>
<td>BWA</td>
<td>Broadband Wireless Access</td>
</tr>
<tr>
<td>CAC</td>
<td>Call Admission Control</td>
</tr>
<tr>
<td>CBR</td>
<td>Constant Bit Rate</td>
</tr>
<tr>
<td>CDMA</td>
<td>Code Division Multiple Access</td>
</tr>
<tr>
<td>CID</td>
<td>Connection IDentifier</td>
</tr>
<tr>
<td>CLO</td>
<td>Cross-Layer Optimizer</td>
</tr>
<tr>
<td>CPS</td>
<td>Common Part Sub layer</td>
</tr>
<tr>
<td>CS</td>
<td>Convergence Sub layer</td>
</tr>
<tr>
<td>CSI</td>
<td>Channel State Information</td>
</tr>
<tr>
<td>DCD</td>
<td>Down link Channel Descriptor</td>
</tr>
<tr>
<td>DHCP</td>
<td>Dynamic Host Configuration Protocol</td>
</tr>
<tr>
<td>DIUC</td>
<td>Down Link Interval Usage Channel</td>
</tr>
<tr>
<td>DL</td>
<td>Down Link</td>
</tr>
<tr>
<td>DLFP</td>
<td>Down Link Frame Prefix</td>
</tr>
<tr>
<td>DL-MAP</td>
<td>Down Link MAP</td>
</tr>
<tr>
<td>DRR</td>
<td>Deficit Round Robin</td>
</tr>
<tr>
<td>DSA</td>
<td>Dynamic Service Addition</td>
</tr>
<tr>
<td>DSA-ACK</td>
<td>Dynamic Service Addition Acknowledgment</td>
</tr>
<tr>
<td>DSA-REQ</td>
<td>Dynamic Service Addition Request</td>
</tr>
<tr>
<td>DSA-RSP</td>
<td>Dynamic Service Addition Response</td>
</tr>
<tr>
<td>DSC</td>
<td>Dynamic Service Change</td>
</tr>
<tr>
<td>DSC-ACK</td>
<td>Dynamic Service Change Acknowledgment</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>DSC-REQ</td>
<td>Dynamic Service Change Request</td>
</tr>
<tr>
<td>DSC-RSP</td>
<td>Dynamic Service Change Response</td>
</tr>
<tr>
<td>DSD</td>
<td>Dynamic Service Delete</td>
</tr>
<tr>
<td>DSD-REQ</td>
<td>Dynamic Service Delete Request</td>
</tr>
<tr>
<td>DSD-RSP</td>
<td>Dynamic Service Delete Response</td>
</tr>
<tr>
<td>DSL</td>
<td>Digital Subscriber Line</td>
</tr>
<tr>
<td>EDGE</td>
<td>Enhanced Data rates for GSM Evolution</td>
</tr>
<tr>
<td>EF</td>
<td>Expedited Forwarding</td>
</tr>
<tr>
<td>EL</td>
<td>Enhanced Layer</td>
</tr>
<tr>
<td>ertPS</td>
<td>Extended Real Time Polling Service</td>
</tr>
<tr>
<td>FCH</td>
<td>Frame Control Header</td>
</tr>
<tr>
<td>FDD</td>
<td>Frequency Division Duplexing</td>
</tr>
<tr>
<td>FEC</td>
<td>Forward Error Correction</td>
</tr>
<tr>
<td>FFT</td>
<td>Fast Fourier Transform</td>
</tr>
<tr>
<td>GC</td>
<td>Guarantee Service</td>
</tr>
<tr>
<td>GM</td>
<td>Grant Management</td>
</tr>
<tr>
<td>GPRS</td>
<td>General Packet Radio Service</td>
</tr>
<tr>
<td>GSM</td>
<td>Global System for Mobile</td>
</tr>
<tr>
<td>HDTV</td>
<td>High-Definition Television</td>
</tr>
<tr>
<td>HSDPA</td>
<td>High-Speed Downlink Packet Access</td>
</tr>
<tr>
<td>HSUPA</td>
<td>High Speed Uplink Packet Access</td>
</tr>
<tr>
<td>HT</td>
<td>Header Type</td>
</tr>
<tr>
<td>HTTP</td>
<td>HyperText Transfer Protocol</td>
</tr>
<tr>
<td>IE</td>
<td>Information Element</td>
</tr>
<tr>
<td>IGMP</td>
<td>Internet Group Management Protocol</td>
</tr>
<tr>
<td>IPTV</td>
<td>Internet Protocol Television</td>
</tr>
<tr>
<td>ISDN</td>
<td>Integrated Services Digital Network</td>
</tr>
<tr>
<td>LOS</td>
<td>Line Of Sight</td>
</tr>
<tr>
<td>LTE</td>
<td>Long Term Evolution</td>
</tr>
<tr>
<td>MAC</td>
<td>Media Access Control</td>
</tr>
<tr>
<td>MAN</td>
<td>Metropolitan Area Network</td>
</tr>
<tr>
<td>MCS</td>
<td>Modulation and Coding Scheme</td>
</tr>
<tr>
<td>MDC</td>
<td>Multiple Description Coding</td>
</tr>
<tr>
<td>MIMO</td>
<td>Multiple In Multiple Out</td>
</tr>
<tr>
<td>MLD</td>
<td>Multicast Listener Discovery</td>
</tr>
<tr>
<td>MPEG</td>
<td>Moving Pictures Expert Group</td>
</tr>
<tr>
<td>MR</td>
<td>Multi hop Relay</td>
</tr>
<tr>
<td>MR-BS</td>
<td>Multi hop Relay Base Station</td>
</tr>
<tr>
<td>MS</td>
<td>Mobile Stations</td>
</tr>
<tr>
<td>MT-CID</td>
<td>Management Tunnel Connection Identifier</td>
</tr>
<tr>
<td>NLOS</td>
<td>Non Line Of Sight</td>
</tr>
<tr>
<td>nrtPS</td>
<td>non-real-time Polling Service</td>
</tr>
<tr>
<td>NT_RS</td>
<td>Non Transparent Relay Station</td>
</tr>
<tr>
<td>O-DRR</td>
<td>Opportunistic Deficit Round Robin</td>
</tr>
<tr>
<td>OFDMA</td>
<td>Orthogonal Frequency Division Multiple Access</td>
</tr>
<tr>
<td>P2P</td>
<td>Peer To Peer</td>
</tr>
<tr>
<td>PDU</td>
<td>Packet Data Unit</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>PER</td>
<td>Packet Error Rate</td>
</tr>
<tr>
<td>PHY</td>
<td>Physical Layer</td>
</tr>
<tr>
<td>PIM</td>
<td>Protocol Independent Multicast</td>
</tr>
<tr>
<td>PM</td>
<td>Poll Me</td>
</tr>
<tr>
<td>PMP</td>
<td>Point to Multi Points</td>
</tr>
<tr>
<td>PU</td>
<td>Protected Unit</td>
</tr>
<tr>
<td>QAM</td>
<td>Quadrature Amplitude Modulation</td>
</tr>
<tr>
<td>QPSK</td>
<td>Quadrature Phase Shift Keying</td>
</tr>
<tr>
<td>RR</td>
<td>Round Robin</td>
</tr>
<tr>
<td>RS</td>
<td>Relay Station</td>
</tr>
<tr>
<td>RTCP</td>
<td>Real Time Control Protocol</td>
</tr>
<tr>
<td>RTG</td>
<td>Receive Transition Gap</td>
</tr>
<tr>
<td>RTP</td>
<td>Real Time Protocol</td>
</tr>
<tr>
<td>rTPS</td>
<td>real-time Polling Service</td>
</tr>
<tr>
<td>RTSP</td>
<td>Real Time Streaming Protocol</td>
</tr>
<tr>
<td>SDP</td>
<td>Session Description Protocol</td>
</tr>
<tr>
<td>SDU</td>
<td>Service Data Unit</td>
</tr>
<tr>
<td>SF</td>
<td>Service Flow</td>
</tr>
<tr>
<td>SFID</td>
<td>Service Flow IDentifier</td>
</tr>
<tr>
<td>SINR</td>
<td>Signal to Interference plus Noise Ratio</td>
</tr>
<tr>
<td>SIP</td>
<td>Session Initiation Protocol</td>
</tr>
<tr>
<td>SNMP</td>
<td>Simple Network Management Protocol</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal to Noise Ratio</td>
</tr>
<tr>
<td>SS</td>
<td>Subscriber Station</td>
</tr>
<tr>
<td>SVC</td>
<td>Scalable Video Coding</td>
</tr>
<tr>
<td>T_RS</td>
<td>Transparent Relay Station</td>
</tr>
<tr>
<td>T_CID</td>
<td>Tunnel Connection Identifier</td>
</tr>
<tr>
<td>TCP</td>
<td>Transmission Control Protocol</td>
</tr>
<tr>
<td>TDD</td>
<td>Time Division Duplexing</td>
</tr>
<tr>
<td>TTG</td>
<td>Transmit Transition Gap</td>
</tr>
<tr>
<td>UCD</td>
<td>Uplink Channel Descriptor</td>
</tr>
<tr>
<td>UEP</td>
<td>Unequal Error Protection</td>
</tr>
<tr>
<td>UGS</td>
<td>Unsolicited Grant Service</td>
</tr>
<tr>
<td>UIUC</td>
<td>Up Link Interval Usage Channel</td>
</tr>
<tr>
<td>UL</td>
<td>Up Link</td>
</tr>
<tr>
<td>UL-MAP</td>
<td>Up Link MAP</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunications System</td>
</tr>
<tr>
<td>VCEG</td>
<td>Video Compression Expert Group</td>
</tr>
<tr>
<td>VOIP</td>
<td>Voice over Internet Protocol</td>
</tr>
<tr>
<td>VPN</td>
<td>Virtual Private Network</td>
</tr>
<tr>
<td>WFQ</td>
<td>Weighted Fair Queuing</td>
</tr>
<tr>
<td>WIFI</td>
<td>Wireless Fidelity</td>
</tr>
<tr>
<td>WIMAX</td>
<td>Worldwide Interoperability for Microwave Access</td>
</tr>
<tr>
<td>WRR</td>
<td>Weighted Round Robin</td>
</tr>
</tbody>
</table>
Chapitre 1

INTRODUCTION

1.1 Motivation

Ces dernières années ont connu un essor sans précédent dans les nouvelles technologies de communications et ceci notamment grâce à la démocratisation de l’accès à Internet. L’accès à l’Internet est devenu vital, aussi nécessaire que l’eau et l’électricité. Dans ce contexte, l’utilisateur a pu bénéficier de l’accroissement du nombre et du type de terminaux et exige à présent que ses services soient accessibles n’importe où et n’importe quand. Les progrès technologiques dans le domaine des communications sans fil ont permis de faire face à l’explosion de la demande d’accès au haut débit et notamment dans les situations de mobilité.

En effet, les instances de standardisation ont développé différentes alternatives pour la fourniture de l’accès au haut débit sans fil. Le choix de la solution peut différer en fonction des contraintes de déploiement et des objectifs visés. Un panorama des solutions les plus utilisées est présenté ci-dessous :

- Le WIFI (IEEE 802.11) : avec des portées de centaines de mètres, le WIFI permet d’offrir des accès haut débit sans fil à l’échelle d’un réseau local. En effet, la problématique du passage à l’échelle est un des critères qui ont limité le déploiement de tels réseaux à l’accès domestique et entreprise.

- Le satellite: la solution satellitaire présente l’avantage d’offrir une connectivité à l’échelle nationale et continentale. Le satellite est largement utilisé pour les applications de diffusion de la télévision et à un degré moindre pour l’accès Internet principalement à cause du coût très élevé de la bande passante par rapport aux solutions concurrentes et du manque d’interactivité. Les nouveaux satellites bidirectionnels opérant sur la bande Ka,
promettent d’apporter une solution efficace à l’accès au haut débit notamment pour les zones blanches.

- Les réseaux cellulaires : ils ont pour objectif d’offrir une connectivité à haut débit sur plusieurs kilomètres. Deux standards concurrents se sont positionnés sur ce segment: le 3GPP avec le HSDPA/LTE, et l'IEEE avec le WIMAX (802.16). Les deux technologies présentent plusieurs similarités notamment pour le support de la couche physique. Bien que nous nous focalisons dans cette thèse sur la technologie WIMAX, les solutions que nous proposons peuvent être adaptées à la technologie HSDPA/LTE en considérant les spécificités de sa couche MAC.

Les déploiements de réseaux WIMAX sont destinés, dans la majorité des cas à un usage « Broadband » fixe ou nomade en substitution d’une infrastructure fixe comme l’ADSL. Les déploiements actuels se situent aujourd’hui en Corée du Sud (KT Telecom qui compterait 1 million d’abonnés), en Russie (Yota et Comstar), au Japon (KDDI) et aux États-Unis (Sprint Nextel). Les services proposés dans ces pays vont de l’accès Internet mobile grâce à des puces embarquées dans les PC ou des clés USB, à des services de voix intégrés dans des téléphones mobiles.

Malgré la maturité affichée dans la conception des différents protocoles du WIMAX, certaines problématiques inhérentes à la couche radio et au manque d’interaction entre les couches basses et les couches applicatives, à fort requis en qualité de service, restent à résoudre.

En effet, en dépit des efforts réalisés pour traiter ces problématiques, un des défis principaux reste la définition d’une architecture de qualité de service adaptée aux spécifications de ce type de réseaux. Cette architecture devra répondre de manière fiable et efficace aux besoins des applications, à la fois pour les services unicast et multicast, tout en prenant en compte l'état du réseau et l’hétérogénéité des terminaux.

1.2 Objectifs et contributions

Dans cette thèse, nous nous sommes intéressés, à la transmission des flux multimédia, notamment les flux vidéo, sur les réseaux WIMAX. En effet, l’objectif est de garantir une meilleure qualité de service à l’utilisateur final. Pour ce faire, une optimisation est réalisée conjointement entre les paramètres de transmission vidéo et les conditions radio variables des différents utilisateurs du réseau WIMAX. Les flux vidéo ont des contraintes strictes en termes de débit, de délai et de pertes. Ainsi, pour atteindre cet objectif, ces paramètres doivent être efficacement contrôlés.

En effet, les conditions physiques et radio d’une station WIMAX dépendent de plusieurs paramètres tels que son emplacement par rapport à la BS (Base Station), ses
capacités radios, la bande passante maximale qu’elle peut atteindre, etc. La diversité des profils des stations, dans une ou plusieurs cellules, présente une forte contrainte pour un flux de streaming vidéo ayant des besoins stricts en QoS (débit de transmission, délai de bout-en-bout, gigue et taux de perte).

L’objectif de notre travail de recherche consiste à trouver un compromis entre les contraintes des applications vidéos et les contraintes physiques du réseau WIMAX pour des communications de type unicast et multicast. Les mécanismes Cross-Layer sont utilisés pour faciliter la communication entre les couches protocolaires du modèle ISO/OSI en facilitant les interactions entre les couches applicatives et les couches physiques. Ce qui permettra d’argumenter considérablement les performances des services déployés.

Premièrement, nous avons défini une entité CLO (« Cross-Layer Optimizer ») qui exploite des messages de gestion des flux de service, échangés entre BS et SS, au niveau MAC, pour déterminer l’adaptation nécessaire et optimale afin d’assurer le bon fonctionnement de l’application. L’analyse des performances, par simulations, de notre solution montre l’efficacité du CLO à adapter, d’une façon dynamique, le débit vidéo en fonction des conditions du réseau afin d’assurer une QoS optimale.

Deuxièmement, nous proposons une solution de streaming multicast des flux vidéo dans les réseaux WIMAX. Cette solution permet à chaque utilisateur d’obtenir une qualité vidéo proportionnelle à ses conditions radio et à sa bande passante disponible. Pour atteindre cet objectif, plusieurs groupes multicast sont formés par couches vidéo de type SVC. Cette solution permet d’optimiser davantage les ressources radio et ainsi d’augmenter la capacité globale du système.

1.3 Organisation de la thèse

La thèse est organisée comme suit :

Chapitre 2 : Etat de l’Art. Ce chapitre présente une vue d’ensemble sur l’architecture des réseaux WIMAX. Nous présentons les caractéristiques de la couche physique (PHY), à savoir, les techniques de modération, de codage, la structure de la trame, ainsi que les caractéristiques de la couche MAC telles que l’adressage, les connexions et la gestion de la QoS. Nous nous intéressons aussi à l’ordonnancement en présentant les travaux réalisés.
pour l’optimisation de l’allocation des ressources dans les réseaux WIMAX en tenant en compte ou non des exigences de QoS.

D’autre part, nous présentons les applications de streaming vidéo, les protocoles multimédia, les standards de codage et les différents travaux réalisés dans la littérature pour l’optimisation de la QoS. Suite à cette présentation, nous introduisons le concept Cross-layer et nous détaillons les travaux récemment réalisés dans ce domaine.

Chapitre 3 Optimisation Cross-Layer pour la Transmission Vidéo Unicast. Dans ce chapitre, nous proposons une architecture Cross-Layer, nommée CLO, qui permet une optimisation et une amélioration de la transmission vidéo unicast au sein d’un réseau WIMAX. Pour cela, nous commençons par identifier les différentes entités intervenant dans la solution. Une approche Cross-Layer entre la couche application et la couche MAC est proposée afin de permettre une adaptation du débit vidéo en fonction des ressources MAC/Radio disponibles au niveau d’une station SS (« Subscriber Station »). Les détails de fonctionnement du CLO et l’évaluation de ses performances par simulation sont ensuite fournis. Nous montrons que le CLO permet d’offrir un meilleur fonctionnement du système et une plus grande amélioration de qualité de services pour les utilisateurs.

Chapitre 4 : Transmission Multicast SVC dans les Réseaux WIMAX. Dans ce chapitre, nous exploitons les bénéfices du codage vidéo hiérarchique, tel que SVC, dans le cadre d’une transmission vidéo en multicast, vers des clients WIMAX ayant des caractéristiques réseaux diverses. D’une part, nous identifions les lacunes d’une transmission multicast dans de telles conditions. D’autre part, nous proposons une architecture multicast, à base du codage SVC, qui permet à chaque client d’acquérir une qualité vidéo équivalente aux ressources radios dont il dispose. Nous proposons et comparons plusieurs mécanismes, prenant en compte la diversité des clients en termes de bande passante, de modulation et de codage.

Chapitre 5 : Conclusion. Nous présentons dans ce chapitre une conclusion générale pour les travaux décrits et nous proposons un ensemble de perspectives pour de futurs travaux de recherche qui s’inscrivent dans la continuité de cette thèse.
Chapitre 2
ETAT DE L’ART

Ce chapitre décrit notre analyse sur les travaux de recherche réalisés dans le domaine des architectures de réseaux mobiles et sans fil et leur évolution actuelle.

2.1 Evolution des systèmes cellulaires

La deuxième génération (2G) de réseaux mobiles a commencé à être déployée au début des années 1990. Le principal réseau de communications mobiles 2G est le système global de communications mobiles (GSM) [4]. Ce service, initialement conçu pour les communications de type voix a été enrichi avec le service SMS (« Short Message Service »). La génération dite de seconde et demie (2,5 G ou 2G+) tels que « General Packet Radio Service » (GPRS) [5] et « Enhanced Data Rates for GSM Evolution » (EDGE) [6], a ajouté des services de données avec un débit plus élevé dédié principalement à l'accès aux services d'Internet comme l'e-mail et le Web. Le débit maximal théorique dans le système GPRS est de 115 Kbps. Le système EDGE offre un meilleur débit maximal théorique (jusqu'à 384 Kbps).

les solutions 3G, cette technologie a réussi une progression fulgurante, qui lui a permis de dépasser les premiers débits de l’ordre de 1 Mbps, pour atteindre des débits plus élevés sur les deux liaisons montantes et descendantes. Ceci est dû principalement à l’apparition de nouvelles améliorations de la solution de base comme le « High-Speed Downlink Packet Access » (HSDPA) et le « High Speed Uplink Packet Access » (HSUPA) [9].

Le système 4G est actuellement en cours de développement au sein de différentes instances de standardisation. L’IEEE propose le 802.16m, tandis que le 3GPP se focalise sur le « Long Term Evolution » (LTE) et le « LTE-Advanced ». Bien que le LTE soit pressenti pour être la solution principale pour les services de données mobiles haut débit, le WIMAX reste tout de même un candidat potentiel pour la quatrième génération (4G) via sa solution IEEE 802.16m [12].

Le nom officiel de la technologie du 3GPP est « Evolved Packet System » (EPS). D’un point de vue performance du système, et selon les différentes études menées, le réseau LTE offre un débit descendant de 100 Mbps avec des antennes « Single In Single Out » (SISO) et 173 Mbps, dans le cas des antennes « Multiple In Multiple Out » (MIMO) [10].

Parallèlement au 3GPP, l’IEEE 802 s’est intéressé aux systèmes mobiles haut débit via son groupe IEEE 802.16 depuis 1999, qui a pour objectif de développer les standards pour « Broadband Wireless Access » (BWA). Pour ce faire, il était question de traiter conjointement la problématique liée à la fourniture du haut débit mais avec une couverture assez importante (ce qui représente un des éléments de différenciation par rapport au 802.11). D’un point de vu commercial, le « Worldwide Interoperability for Microwave Access » (WIMAX) est le nom commun pour ce standard. Le WIMAX offre un débit théorique de 75 Mbps et une couverture maximale de 50 km. Cette technologie vise également à supporter plusieurs services avec des niveaux de qualité de service différents, le tout à un coût raisonnable. Ces services peuvent avoir des garanties strictes de QoS (comme un tunnel VPN), des garanties de QoS moins élevées (comme « Voice over Internet Protocol » (VoIP), vidéo à la demande (VOD), télévision numérique, et les jeux) ou Best Effort (comme « HyperText Transfer Protocol » (HTTP)). La dernière version du standard est 802.16m, et elle vise à offrir un débit de 1 Gbps pour une station fixe, et 100 Mbps pour une station mobile avec des vitesses de mobilité de l’utilisateur qui peuvent atteindre les 300km/h.

La prochaine section décrit la norme IEEE 802.16-2004 utilisée dans nos travaux de recherche. Nous présentons le modèle de référence décrivant la couche MAC (Medium Access Control) et la couche PHY (Physical). Par la suite, les caractéristiques de chaque couche sont détaillées, à savoir, les différents modèles d’architecture, l’adressage, les connexions, les structures de trames et la gestion de la QoS.
2.2 L'IEEE 802.16-2004

L'IEEE 802.16 Working Group est le groupe de travail IEEE pour les réseaux métropolitains mobiles. Ce groupe de travail a développé différentes versions du standard, la version de décembre 2001 pour les réseaux de collecte, le 802.16a/d pour l'accès fixe, et enfin le 802.16e/m pour l'accès mobile.

L'IEEE 802.16 (version décembre 2001) est conçue pour fonctionner dans un spectre variant entre 10 et 66 GHz. Sur ces fréquences, la transmission doit être en ligne de mire «Line-of-Sight» (LOS), il s'agit d'une transmission directe sans présence d'obstacles. Le standard spécifie la couche PHY et la couche MAC du système 802.16.

Cette solution était plutôt adaptée pour la mise en place de réseaux de collecte, mais non appropriée pour la majorité des applications grand public qui nécessitent des transmissions de type «non LOS» (NLOS). Pour cette raison, une extension de l'IEEE802.16, a été proposée en avril 2003 afin d'intégrer ce besoin de transmission NLOS. Il s'agit de la norme IEEE 802.16a qui fonctionne dans des plages des fréquences, avec ou sans licence, variant de 2 à 11 GHz.

La Figure 2-1 illustre les caractéristiques et les spécificités des différents standards du groupe 802.16.

<table>
<thead>
<tr>
<th>Completion Date</th>
<th>802.16</th>
<th>802.16a/802.16REVd</th>
<th>802.16e</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dec 2001</td>
<td>802.16: Jan 2003</td>
<td>2005</td>
</tr>
<tr>
<td>Spectrum</td>
<td>10 to 66 GHz</td>
<td>< 11 GHz</td>
<td>< 6 GHz</td>
</tr>
<tr>
<td>Channel Conditions</td>
<td>Line-of-Sight only</td>
<td>Non-Line-of-Sight</td>
<td>Non-Line-of-Sight</td>
</tr>
<tr>
<td>Bit Rate</td>
<td>32 to134 Mbps</td>
<td>75 Mbps max 20-MHz channelization</td>
<td>15 Mbps max 5-MHz channelization</td>
</tr>
<tr>
<td>Modulation</td>
<td>QPSK 16QAM 64QAM</td>
<td>OFDM 256 subcarrier QPSK 16QAM 64QAM</td>
<td>Same as 802.16a</td>
</tr>
<tr>
<td>Mobility</td>
<td>Fixed</td>
<td>Fixed</td>
<td>Pedestrian mobility Regional roaming</td>
</tr>
<tr>
<td>Channel Bandwidths</td>
<td>20, 25 and 28 MHz</td>
<td>Selectable between 1.25 and 20 MHz</td>
<td>Same as 802.16a with uplink subchannels</td>
</tr>
<tr>
<td>Typical Cell Radius</td>
<td>1 to 3 miles</td>
<td>3 to 5 miles (30 miles max based on tower height, antenna gain, and power transmit)</td>
<td>1 to 3 miles</td>
</tr>
</tbody>
</table>

Figure 2-1 : Les standards IEEE 802.16
2.2.1 Modèle de référence

La Figure 2-2 représente le modèle de référence pour les couches MAC et PHY. Nous nous intéressons dans un premier temps, à la couche MAC. Elle est composée essentiellement de 3 sous-couches : la sous-couche CS (« Convergence Sub layer ») communique avec les couches supérieures, la sous-couche CPS (« Common Part Sub layer ») définit les fonctionnalités de bases d’une couche MAC, ainsi que la sous-couche de sécurité (« Security Sub layer ») :

- **La sous-couche CS (« Convergence Sub layer ») :**

 Cette sous-couche fournit la transformation de toutes les données externes du réseau, reçues au point d’accès CS-SAP, en un MAC SDU (« Service Data Unit »), qui par la suite, est acheminé vers la sous-couche CPS via le point d’accès MAC-SAP. Ceci inclut aussi la classification des SDU provenant du réseau externe, et leurs associations selon leur propre SFID (« Service Flow IDentifier ») et leur CID (« Connection IDentifier »). Cette couche implémente aussi d’autres fonctionnalités telles que la suppression d’entêtes (PHS : « Payload Header Suppression »).

 Plusieurs spécifications de la sous-couche CS sont définies pour garantir l'interfaçage avec divers protocoles. Le format interne du payload CS lui est propre, ce qui veut dire que la CPS n’a besoin ni de connaître le format, ni d'extraire une information du payload CS.
• **La sous-couche CPS (« Common Part Sub layer »)**:

Cette couche fournit les fonctionnalités de base de la couche MAC, à savoir l'allocation de bande passante, l'établissement et la maintenance des connexions.

• **La sous-couche sécurité (« Security Sub layer »)**

Cette sous-couche fournit les fonctionnalités d'authentification, d'échange de clés et de cryptage.

Dans la prochaine section, nous décrivons avec plus de détails les différentes spécifications de la couche MAC, plus précisément la sous-couche CPS. Pour le reste de ce chapitre, nous sous-entendons par MAC la sous-couche CPS de la couche MAC.

2.2.2 Couche MAC

Le 802.16 définit deux modes de topologie possible: Le mode PMP (Point to Multi Point), et le mode MESH. Nous détaillons ces deux modes dans ce qui suit

2.2.2.1 Le Mode PMP

Il s'agit du mode de communication de base pour le 802.16. Comme son nom l'indique, il s'agit d'une transmission d'un point central vers plusieurs points dans le réseau, ce concept est présenté dans la Figure 2-3. Dans cette configuration, le lien descendant DL (« Down Link »), depuis la BS (« Base Station ») vers l'utilisateur SS (« Subscriber Station ») fonctionne en mode PMP : la BS est l'élément qui contrôle les transmissions dans sa zone de couverture sans coordination avec les autres stations (BS ou SS).

![Figure 2-3 : Architecture PMP](image-url)
Dans le cas d'un duplexage temporel TDD (« Time Division Duplexing »), la BS doit diviser la période de transmission en périodes DL et UL (« Up Link »). Dans le cas d'un duplexage fréquentiel FDD (« Frequency Division Duplexing »), deux fréquences différentes sont allouées par la BS pour le DL et UL.

Généralement la transmission en DL est effectuée en broadcast depuis la BS, la trame en DL est divisée en plusieurs parties, chacune étant dédiée à une ou plusieurs SS. Chaque SS est en conséquence capable de lire uniquement la partie de la trame qui lui est destinée.

Sur le lien montant, les SS partagent le lien à la demande pour pouvoir transmettre. En fonction de la classe de service utilisée, une SS peut avoir le droit de transmettre. L'obtention du droit de transmission peut être décidée par la BS suite à une requête provenant de l'utilisateur. En plus de la transmission unicast, les données peuvent être aussi transmises en multicast tel que la diffusion de contenu vidéo ou encore en broadcast à toutes les stations.

Dans le mode PMP, les utilisateurs adhèrent à un protocole de communication qui va, par la suite, gérer l'accès, activer les services nécessaires et assurer les besoins en délai et bande passante pour ses nouvelles applications. Ce processus est assuré par des mécanismes d'ordonnancement, tels que les mécanismes « unsolicited bandwidth grants », « polling » et « contention ».

La couche MAC est orientée connexion, c.-à-d. que toutes les communications se font dans un contexte de connexions: l'analyse des services d'une nouvelle SS, l'association d'un niveau de QoS à un service, etc. Lors de l'entrée d'une SS dans le système, plusieurs flux de service doivent être disponibles. Après l'enregistrement d'une SS dans le réseau, différentes connexions sont associées aux flux de services (une connexion par flux), et c'est avec la référence à une connexion qu'une demande de bande passante par exemple pourra avoir lieu.

Une connexion définit à la fois le flux de service et la relation entre les processus de convergence et ce flux. Ce dernier définit les besoins en termes de QoS des paquets qui vont être échangés au cours de cette connexion. Le concept de flux de service est primordial pour le fonctionnement du protocole MAC, notamment pour la gestion des ressources réseaux. En effet, il assure la gestion de la QoS sur le lien montant et descendant (UL/DL) d'une SS ce qui est essentiel pour le processus d'allocation de bande passante.

2.2.2.2 Le Mode mesh

La différence majeure entre le mode PMP et le mode Mesh (Figure 2-4) est détaillée dans ce qui suit. En mode PMP, le trafic se fait uniquement depuis ou vers la BS, alors que dans le cas du Mesh, les SS peuvent communiquer directement entre elles sans passer par la BS. Pour assurer le bon fonctionnement de ces deux types de communications, un
mécanisme d'ordonnancement est nécessaire. L'ordonnancement peut être distribué ou centralisé au niveau de la BS, on parle dans ce dernier cas de topologie Mesh BS, ou bien être une combinaison des deux.

![Architecture MESH](image)

Figure 2-4 : Architecture MESH

Contrairement au mode PMP, où la BS était la seule entité qui contrôle et initie les transmissions, dans le mode Mesh, le processus est géré de façon coordonnée entre les Mesh SS et la Mesh BS. En effet, les Mesh SS peuvent également transmettre au même titre que la Mesh BS.

En utilisant un ordonnancement distribué, les nœuds peuvent prendre des décisions d'ordonnancement à partir des informations de scheduling du voisinage à deux sauts et diffuser à leur tour leurs propres informations au voisinage.

Dans le cas d'un ordonnancement centralisé, les ressources sont distribuées d'une manière centralisée. En effet, la Mesh BS doit gérer toutes les requêtes de ressources provenant des Mesh SS saut-par-saut, i.e., la Mesh BS gère les requêtes du premier saut et puis du second, etc. La Mesh BS détermine les ressources requises pour chaque lien, en up Link ou en down Link. Elle transmet ensuite l'information à tous les nœuds. Le message en question ne contient pas une décision d'ordonnancement, c'est à chaque nœud de calculer l'ordonnancement à l'aide d'un algorithme prédéterminé avec les paramètres donnés.

Le mode MESH n'a pas été retenu par le groupe de travail 802.16 dans sa révision 2009. Son retrait est dû à ses spécifications incomplètes, qui avaient peu de chances d'être achevées, et également à son manque de compatibilité avec le mode PMP.

Pour le mode MMR (Mobile Multi hop Relay), plus de détails sont présentés dans la section 2.4.
2.2.2.3 Adressage et connexions

Dans le mode PMP, chaque SS possède une adresse MAC universelle de 48 bits, cette adresse est unique, elle est nécessaire pour l'étape d'initialisation ou "initial ranging" afin d'établir les connexions requises. Cette adresse est également utilisée dans le processus d'authentification.

Les connexions sont identifiées par le CID (16bits). Lors de l'initialisation d'un SS, deux paires de connexions de management (UL et DL) sont établies entre la BS et le SS. Ensuite, une troisième paire de connexion peut être établie de manière optionnelle. La présence de trois paires de connexions reflète la présence de trois niveaux de qualité de service pour le trafic de management. La connexion de base est destinée aux échanges de messages de management courts et urgents entre les couches MAC. La connexion primaire est utilisée par les couches MAC afin de transporter les messages de management plus longs et plus tolérants aux délais. La connexion secondaire est utilisée pour les échanges de messages plus tolérants aux délais de type DHCP, TFTP, SNMP, etc.

Pour le mode Mesh, l'adresse MAC est toujours utilisée. Une fois autorisé à entrer dans le réseau, une SS doit recevoir un Node ID (16 bits). Cela représente l'identité de base pour les opérations normales et il est transféré dans le sous-entête Mesh. Par ailleurs, pour pouvoir communiquer avec les nœuds dans un contexte de voisinage local, l'identifiant du lien ou le LINK ID (8 bits) est utilisé. Chaque nœud doit associer un identificateur pour chaque lien entre lui et un de ses voisins. Le LINK ID est une partie du CID dans l'entête générique de la MAC PDU.

2.2.3 Couche Physique

Dans le cadre de notre étude, nous nous sommes intéressés principalement à la couche physique OFDMA. En effet, la couche Wireless MAN-OFDMA PHY est désignée pour supporter des transmissions NLOS opérants dans des fréquences en dessous de 11GHz.

2.2.3.1 Modulation et codage du canal

La modulation et le codage adaptatifs AMC (« Adaptive Modulation and Coding ») est une technique puissante utilisée par la technologie WIMAX pour renforcer la robustesse de la communication dans des conditions radio très variables. Ceci est réalisé en utilisant un schéma de modulation et de codage MCS (« Modulation and Coding Scheme ») robuste, c'est à dire en transmettant à des débits faibles lorsque le canal est de mauvaise qualité et en augmentant le débit de données en utilisant une MCS plus efficace lorsque le canal est bon.

Les techniques de modulation utilisées par la technologie WIMAX sont: BPSK, QPSK, 16-QAM et 64-QAM. Pour le codage du canal, plusieurs types de FEC (« Forward Error Correction ») sont utilisés dans les réseaux WIMAX : « Convolutional Codes », « Turbo
Codes », et « Block Codes ».

Ces techniques de codage de canal sont utilisées pour ajouter, aux bits d'information, des bits redondants qui sont destinés à augmenter le gain de codage et à corriger les erreurs sur les bits lors de la transmission. Avec la combinaison des modulations, les différents taux de codages proposés par la norme IEEE 802.16, et les trois types de FEC, il existe 52 configurations possibles, nommées « burst profiles ».

Le mécanisme utilisé pour choisir le MCS le plus approprié pour chaque trame et pour chaque utilisateur, et gérer les différents « burst profiles » en DL et en UL de chaque SS, n'est pas entièrement défini par la norme 802.16.

Néanmoins, l'idée de base consiste à adapter le choix le plus approprié du « burst profile », identifié par un DIUC / UIUC (« DL / UL Interval Usage Channel »), au rapport signal / bruit SNR (« Signal to Noise Ratio ») du canal mesuré au niveau du récepteur.

Le Tableau 2-1ci-dessous fournit les MCS recommandés par la norme IEEE 802.16 [1] selon la valeur du SNR côté récepteur pour une couche physique 802.16 OFDMA (les valeurs des SNR ne sont que des ordres de grandeur obtenus pour des besoins spécifiques)

<table>
<thead>
<tr>
<th>Modulation</th>
<th>Coding rate</th>
<th>Receiver SNR (dB)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QPSK</td>
<td>1/2</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>3/4</td>
<td>8.0</td>
</tr>
<tr>
<td>16-QAM</td>
<td>1/2</td>
<td>10.5</td>
</tr>
<tr>
<td></td>
<td>3/4</td>
<td>14.0</td>
</tr>
<tr>
<td>64-QAM</td>
<td>2/3</td>
<td>18.0</td>
</tr>
<tr>
<td></td>
<td>3/4</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Tableau 2-1. MCS selon SNR côté récepteur (802.16 - OFDMA) [1]

2.2.3.2 Le slot OFDMA

Un slot OFDMA possède deux dimensions, une dimension temporelle et une dimension fréquentielle. Le canal physique est divisé en plusieurs portées (« sub carriers »), un sous-ensemble de portées forme un sous-canal. En DL, un sous-canal peut être utilisé par plusieurs utilisateurs. En UL, un transmetteur peut utiliser plusieurs sous-canaux. Les portées, formant un sous-canal, pourraient mais ne devraient pas être adjacents pour des raisons de scalabilité et d'accès multiples.

2.2.3.3 Structure de la trame

Concernant le mode de duplexage, il existe le TDD (« Time Division Duplexing ») et le FDD (« Frequency Division Duplexing ») ou encore le H-FDD (« Half FDD »). Pour le duplexage fréquentiel, les canaux en DL et UL sont séparés en fréquences différentes et la
La structure de la trame est construite à partir des transmissions de la BS et des SS. En effet, une trame en lien descendant commence par un préambule qui sert à la synchronisation physique, suivi d'une période de transmission en DL, puis d'une période de transmission en UL. Dans chaque trame, de petites périodes TTG et RTG (« Receive / Transmit Transition Gap ») doivent être insérées respectivement entre le DL et l'UL et à la fin de la trame pour permettre à la BS et aux SS d'avoir des slots pour échanger entre les modes de transmission ou de réception.

La structure de la trame OFDMA est illustrée dans la Figure 2-5. Les deux premiers sous-canaux transmis dans le symbole de donnée en DL, juste après le préambule, est appelé le FCH (« Frame Control Header »). Le FCH contient le DLFP (« DL Frame Prefix ») qui donne entre autres la longueur du message DL-MAP. Le DL-MAP, s'il est transmis, est le premier burst qui suit le FCH. Si les messages DCD et UCD sont transmis dans la trame, ils doivent l'être immédiatement après le DL-MAP et l'UL-MAP. Tous ces messages, que nous venons de citer, sont des messages de contrôle de la couche MAC envoyés par la BS vers toutes les SS en mode broadcast.

Comme déjà cité, les messages DL-MAP et UL-MAP donnent des informations de contrôle qui renseignent chaque SS sur les coordonnées et la taille du DL burst qui lui sont destinées ainsi que les coordonnées et la taille de l'UL burst qui lui sont allouées pour transmettre vers la BS. La sous-trame en UL, contient un premier burst appelé « ranging subchannel », il s'agit d'un burst à base de contention, utile pour réaliser « l'initial ranging », le « periodic ranging » ainsi que pour des « Bandwidth Request » à base de contention. C'est une période pendant laquelle n'importe quelle station peut transmettre en procédant à une technique ou algorithme d'élection.

Nous avons présenté, jusqu'à maintenant, les caractéristiques générales de la couche PHY et MAC. Nous avons décrit les différentes structures et mécanismes définis dans chacune de ces couches. Dans la prochaine section, nous mettons l’accent sur la gestion de la qualité de service au niveau de la couche MAC 802.16. Cette étude est primordiale pour la suite de nos travaux.
2.2.4 Gestion de la QoS

Un flux est un service de transport MAC qui fournit un transport unidirectionnel de paquets soit en lien montant ou en lien descendant. La liaison montante et les paquets en liaison descendante sont transmis par les SS et de la BS, respectivement.

Un flux de service (SF) est référencé par son identifiant de flux de service (SFID). Lorsque le flux de service est admis, une nouvelle connexion est associée. L'identifiant de connexion (CID) est ajouté aux paramètres du flux de service.

Les principaux paramètres de QoS d'un flux de service sont les suivants:

- « Traffic priority » : représente la priorité accordée au flux de service.
- « Maximum sustained traffic rate » : représente le débit maximal autorisé.
- « Minimum reserved traffic rate » : représente le débit minimum réservé.
- « Tolerated jitter » : représente la variation du délai maximum de la connexion.
- « Maximum latency » : représente le temps de latence maximal entre la réception d'un paquet et sa transmission.

La gestion dynamique des services est utilisée pour ajouter un nouveau flux de service. Un utilisateur peut avoir de nombreux flux de service simultanément. Une fois qu'un flux de service est créé, l'utilisateur peut demander à modifier ses paramètres ou à supprimer le flux.
2.2.4.1 Ajout d’un flux de service

Le mécanisme d’ajout de services dynamiques (DSA) est utilisé afin de créer un nouveau SF entre une SS et une BS, (voir Figure 2-6 et Figure 2-7). Il existe trois types de messages DSA: « Dynamic Service Addition Request » (DSA-REQ), « Dynamic Service Addition Response » (DSA-RSP) et « Dynamic Service Addition Acknowledgment » (DSA-ACK).

« Dynamic Service Addition Request » : Un message DSA-REQ est envoyé par une SS ou une BS pour demander la création d’un nouveau SF entre une SS et une BS (ou inversement). Quand une SS initialise le mécanisme DSA, le message DSA-REQ ne fournit pas de SFID. La SS peut utiliser une référence d’une configuration de service prédéfinie par la BS, nommé classe de service, au lieu d’un ou de plusieurs paramètres de QoS. Lorsque la BS initialise le mécanisme DSA, le message DSA-REQ contient un SFID, un CID si la connexion est admise, et un ensemble de paramètres de QoS si la classe de service existe.

Tous les messages DSA-REQ contiennent les paramètres suivants:

- CID: c'est l'identifiant principal de management de connexion de la SS. La connexion de management principale est utilisée par la BS et les SS dans le but d'échanger des messages plus longs et des messages de management plus tolérants au délai.
- « Transaction ID » : représente l'identifiant unique pour cette transaction attribué par l'expéditeur.
- « Service Flow Parameters »: spécifie les caractéristiques du trafic SF et les besoins de l’ordonnancement (« Scheduling »).

Figure 2-6 : Ajout d’un flow de service (initié par une SS)

« Dynamic Service Addition Response » : Un message DSA-RSP est généré en réponse à un message DSA-REQ reçu. Un message DSA-RSP contient un CID, un ID de
transaction, qui représente l'identifiant du message DSA-REQ, et une confirmation qui représente le code de confirmation appropriée (CC) pour l'intégralité du message DSA-REQ.

Quand les SS initialisent un mécanisme d'addition de flux de service, le message DSA-RSP contient un SFID si l'opération est réussie. Sinon, la BS utilise la référence d'origine du flux de service pour identifier les paramètres qui n'ont pas été retenus dans le message DSA-RSP.

Si une transaction, initialisée par la BS, échoue, la SS doit utiliser un SFID pour identifier les paramètres qui ont causé l'échec dans le message DSA-RSP.

Figure 2-7 : Ajout d'un flow de service (initié par une BS)

« Dynamic Service Addition Acknowledgment » : Un message DSA-ACK contient un CID, une transaction ID, qui représente l'identifiant du message DSA-RSP correspondant, un code de confirmation qui représente l'intégralité du message DSA-RSP correspondant, et un ensemble d'erreur du flux de service. L'ensemble des erreurs doit être inclus pour tous les flux de services qui ont échoué dans le message DSA-RSP correspondant. Ce paramètre est obligatoire uniquement si la transaction échoue.

Les détails du comportement d'une SS et une BS pour ajouter un nouveau flux de service sont indiqués dans la Figure 2-6 et Figure 2-7, quand les SS ou la BS initialisent le processus, respectivement.

2.2.4.2 Modification d'un flux de service

Les messages de changement de service (DSC) sont utilisés pour modifier les paramètres d'un flux de service existant. Il existe trois types de messages DSC : « Dynamic
Service Change Request » (DSC-REQ), « Dynamic Service Change Response » (DSC-RSP), et « Dynamic Service Change Acknowledgment » (DSC-ACK).

« Dynamic Service Change Request » : Un message DSC-REQ est envoyé par une SS ou une BS pour demander la modification certains paramètres d'un flux de service existant. Un message DSC-REQ contient un CID, un ID de transaction, qui représente l'identifiant unique pour cette transaction attribué par l'expéditeur, et un paramètre du SF indiquant les nouvelles caractéristiques du trafic et les nouvelles contraintes d'ordonnancement.

« Dynamic Service Change Response » : Un message DSC-RSP est généré en réponse au message reçu DSC-REQ. Un message DSC-RSP contient un CID, un ID de transaction, qui représente l'identifiant du message DSC-REQ correspondant, et un code de confirmation qui représente l'intégralité du message DSC-REQ correspondant.

Lorsque le mécanisme DSC réussit, un paramètre appelé « Service Flow Parameter » doit être ajouté au message DSC-RSP. Ce paramètre spécifie les caractéristiques du flux de service et les exigences d'ordonnancement. Sinon, lorsque le mécanisme DSC échoue, un paramètre appelé « Service Error » doit être ajouté au message DSC-RSP. Ce paramètre doit être inclus pour tous les flux de service pour lesquels le message DSC-REQ correspondant a échoué.

« Dynamic Service Change Acknowledgment » : Un message DSC-ACK est généré en réponse à un message reçu DSC-RSP. Un message DSC-ACK contient un CID, un ID de transaction, qui représente l'identifiant du message correspondant DSC-RSP, un code de confirmation de l'intégralité du message DSC-RSP correspondant.

L'ensemble des erreurs doit être inclus pour chaque flux de service qui a échoué dans le message DSC-RSP correspondant. Ce paramètre est obligatoire uniquement si la transaction a échoué.

Les détails du comportement d'une SS et d'une BS pour changer les paramètres d'un flux de service existant sont indiqués à la Figure 2-8 et la Figure 2-9 lorsque la SS ou la BS initialise le processus, respectivement.

2.2.4.3 Suppression d'un flux de service

Le message « Dynamic Service Delete » (DSD) est utilisé pour supprimer un flux de service existant. Il existe 2 types de messages DSD : « Dynamic Service Delete Request » (DSD-REQ) et « Dynamic Service Delete Response » (DSD-RSP).

« Dynamic Service Delete Request » : un message DSD-REQ est envoyé par une SS ou une BS pour la suppression d'un flux de service existant. Le message DSD-REQ contient un CID et un ID de transaction.
« Dynamic Service Delete Response » : un message DSD-RSP est généré en réponse à un message DSD-REQ. Le message DSD-RSP contient un CID, un SFID, qui représente le SFID provenant du message DCD-REQ correspondant, une transaction ID qui représente l'identifiant du message DSD-REQ correspondant, et un code de confirmation.

Les détails du comportement d'une SS et d'une BS pour la suppression d'un flux de service existant sont indiqués dans la Figure 2-10 et la Figure 2-11.

La gestion des flux de service décrite dans cette section nous donne une idée sur les différents messages de signalisation échangés entre les stations d'une cellule WIMAX, ainsi que sur les informations contenues dans ces messages. Ce type d'informations s'avère assez intéressant pour pouvoir l'exploiter et effectuer des améliorations et des optimisations de la capacité globale du système. En effet, le Chapitre 3 illustre une de nos propositions où
nous exploitons le mécanisme de gestion des flux de service en faveur d’une application de streaming vidéo.

Dans la prochaine section, nous décrivons les différentes classes de services afin d’identifier la classe de service qui correspond aux applications de streaming vidéo auxquelles nous nous sommes intéressés.

2.2.4.4 Les classes de QoS

Le standard IEEE 802.16-2004 définit quatre classes de QoS: « Unsolicited Grant Service » (UGS), « real-time Polling Service » (rtPS), « non-real-time Polling Service » (nrtPS), et « Best Effort » (BE).

L’amendement IEEE 802.16e a ajouté une cinquième classe de QoS au standard 802.16e, nommée « Extended Real Time Polling Service » (ertPS). Les différentes caractéristiques de ces cinq classes QoS sont résumées ci-dessous.

Caractéristiques de la classe BE: La classe de service BE est utilisé pour les trafics Best Effort, où il n’y a de garantie ni de débit, ni de délai. Une SS pourra utiliser des
opportunités de requêtes unicast, ou bien, les zones de concurrences pour envoyer leur requêtes. Il n’existe pas de paramètres de QoS obligations pour la classe BE.

Un exemple d’application BE et le Email.

Caractéristiques de la classe nrtPS : La classe de service rtPS a été conçue pour les flux de service non temps réel, qui ont une taille de paquet de données variable et un intervalle inter-paquets variable. Le débit maximum supporté, le débit minimum réservé, et la priorité sont les paramètres de QoS obligations pour cette classe.

Un exemple d’applications nrtPS est le File Transfer Protocol (FTP).

Caractéristiques de la classe UGS : La classe UGS présente les flux de service temps réel ayant une taille de paquets de données fixe. Le débit maximum supporté, la latence maximale tolérée et la gigue sont les paramètres de QoS obligations de cette classe.

Le débit des services d’une classe UGS étant constant pendant toute la connexion, la BS peut faire des allocations de bande passante de manière spontanée. Pour chaque utilisateur UGS, la BS doit allouer un débit égal au débit maximum de cet utilisateur.

Caractéristiques de la classe rtPS : La classe rtPS inclut les flux de service temps réel qui ont une taille de paquet de données variable. Le débit maximum, le débit minimum réservé et la latence maximum tolérée sont des paramètres obligatoires pour la classe de service rtPS.

Les demandes en bande passante sont émises via des requêtes unicast périodiques par les SS à destination de la BS. Pour chaque utilisateur rtPS, la BS doit allouer un débit supérieur ou égal au débit minimum réservé.

Un exemple d’applications rtPS est le transfert de flux vidéo.

Caractéristiques de la classe ertPS : La classe ertPS inclut les flux de service temps réel. Le débit maximum, le débit minimum réservé et la latence maximale tolérée sont des paramètres de QoS obligations pour cette classe.

La classe ertPS combine les avantages de deux classes de service, à savoir l’UGS et la rtPS. Contrairement à l’UGS, où les allocations sont fixes, les allocations avec ertPS sont dynamiques. Par la suite, la SS peut demander de changer la taille des allocations par l'envoi d'une demande de changement de bande passante. Un exemple d'applications ertPS est la VoIP.

Dans nos travaux, notre intérêt se porte particulièrement sur la classe de service rtPS. En effet, nous nous intéressons aux applications temps réel de type streaming vidéo et la classe rtPS est la plus adéquate pour ce type d’applications.

Une fois que les flux de service d’une SS sont classés parmi les 5 classes de services que nous venons de citer, la SS doit acquérir des ressources sur le canal pour pouvoir émettre
ses données. Ceci s'effectue à l'aide de mécanismes de demande de bande passante, envoyés à la BS.

2.2.4.5 Les techniques de demande de bande passante

Le standard définit plusieurs techniques pour l'établissement des demandes en bande passante de la SS vers la BS. On verra néanmoins, que la majorité de ces techniques s'appuie largement sur la première technique citée ci-dessous :

REQUESTS : Il s'agit de la requête classique BW-REQ pour demander de la bande passante. En effet, une SS, ayant une allocation de ressources en UL disponible, peut envoyer cette requête en indiquant la taille en octets de ressources dont elle a besoin et son identité CID. Cette demande peut se faire de deux façons, la première consiste à envoyer un en-tête PDU sans payload, il s'agit du « Bandwidth Request Header ». Dans le second cas, on enverra un paquet PDU avec un en-tête générique, il y aura, ici, un sous-entête au niveau du payload qui indiquera la demande de bande passante, il s'agit d'une demande « piggypacked ».

GRANTS : Les « GRANTS » représentent les réponses aux requêtes de bande passante. Normalement une allocation est attribuée à une connexion particulière, mais les GRANTS sont destinés à la connexion de base de la station. Dans le cas où la SS ne reçoit pas de réponse, ou que la donnée est erronée ou qu'il est trop tard pour l'appliquer, la SS va décider de relancer la requête ou d'annuler la transmission. Pour insérer sa demande, une SS peut utiliser les "Request IE" en broadcast ou multicast si elle fait partie d'un groupe de polling multicast. La SS peut utiliser les "Request IE" même si la BS pourrait lui fournir un meilleur Burst Profile.

PM-bit (« Poll Me ») : Les SS ayant au moins une connexion UGS active peuvent utiliser le bit PM du sous-entête GM, dans un PDU MAC de la connexion UGS, pour informer la BS qu'un polling est nécessaire pour des connexions non-UGS. En réponse à cette demande, la BS lance un processus de polling unicast.

Cette technique ne devrait être utilisée par les SS que lorsqu'il est impossible d'effectuer une demande de bande passante par les techniques de « piggybacking » ou de « stealing ».

POLLING : Le « Polling » est le processus à travers lequel la BS alloue de la bande passante à la SS pour qu'elle puisse demander de la bande passante. Le polling n'est pas un message explicite, il est représenté sous la forme de plusieurs IE au niveau de l'UL-MAP. Le polling peut être réalisé en broadcast, en multicast ou en unicast. Notons que le polling se fait par station, alors qu'une demande de bande passante se fait par connexion. Le polling unicast est envoyé vers une SS via son basic CID, celle-ci va utiliser cette allocation pour envoyer sa demande de BW pour n'importe quel CID. Dans le cas unicast, le polling est exprimé à l'aide d'un Data Grant IE. Le polling multicast ou broadcast est un peu
différent. En effet, le polling est envoyé pour un CID broadcast (0000) ou bien un CID multicast.

« Contention-based Bandwidth Request » : L’OFDMA supporte deux techniques à base de contention. La première utilise le format classique d’une BW REQ défini ci-dessous et la seconde utilise le mécanisme des codes CDMA. En effet, la couche PHY OFDMA spécifie un sous-canal pour le ranging et un ensemble de codes ranging qui devrait être utilisé pour la « Contention based BW Request ». Ainsi, une SS voulant faire sa demande de BW, va choisir d’une façon équiprobable un code ranging, ce code sera modulé en un sous-canal ranging, puis transmis via l’allocation correspondante. Par conséquent, la BS alloue les ressources nécessaires à la SS en indiquant non pas son basic CID, mais plutôt le broadcast CID en combinaison avec un CDMA_Allocation_IE contenant l’allocation et le même code ranging qui a été utilisé.

« Piggybacking » : Pour demander de la bande passante, la SS peut envoyer un entête de demande de bande passante (6 octets), ou simplement intégrer la demande au sein d’un PDU en utilisant le sous-entête GM (Grant Management : 2 octets). Le mécanisme de « piggybacking » est facultatif et ne peut être utilisé que pour demander de la bande passante pour les connexions à qui appartient le PDU contenant le champ GM.

« Bandwidth stealing » : Ce mécanisme fait référence à l’utilisation, par les SS, d’une partie de la bande passante déjà allouée pour les données, pour transmettre une demande de bande passante à la place. Il est à noter que puisque la SS reçoit l’allocation de bande passante dans son ensemble en réponse aux demandes par connexion, la SS ne peut pas savoir quelle demande sera acceptée. La SS peut utiliser l’allocation, soit pour envoyer des données, soit pour envoyer la demande de bande passante pour une de ses connexions, ou même pour envoyer des messages de management.

Notre intérêt dans cette thèse se porte sur les applications de streaming vidéo qui sont classées dans la classe de service rtPS. Par la suite, la technique de demande de bande passante PM dédiée à la classe de service UGS, sera exclue ou non utilisée dans notre cas. En outre, la majorité des techniques et mécanismes que nous venons de voir sont les techniques définis dans la standard 802.16, mais ils ne sont pas toujours implémentés. En général, uniquement les techniques de base telle que les REQUEST, GRANT et POLLING sont considérées. En particulier, la plateforme de simulation (QualNet) que nous avons utilisée pour l’analyse de performance de nos solutions, intègre uniquement les techniques essentielles de demande de bande passante. Dans le Chapitre 3, ces techniques seront utilisées par les SS WIMAX afin d’acquérir des ressources en lien montant (UL) pour envoyer les messages de gestion des flux de service relatifs aux applications vidéo.

Le standard IEEE 802.16 a défini les couches MAC et PHY, les types de classes de service (ou classes de QoS), les paramètres de QoS requis ainsi que les messages de
management. Par contre, l'algorithme d'ordonnancement a été laissé comme un sujet ouvert. Il appartient aux constructeurs des équipements et aux opérateurs de choisir l'algorithme d'ordonnancement le plus approprié. Nous définissons dans la prochaine section l'ordonnancement dans les réseaux WIMAX en mode PMP.

2.3 L’ordonnancement dans les réseaux IEEE 802.16

L’ordonnanceur au niveau de la BS est responsable de l'ensemble du contrôle d'accès des différentes SS en lien descendant et en lien montant. Pour indiquer l’affectation des intervalles de transmission (ou « Burst ») en lien descendant et montant, dans chaque trame, la BS transmet les messages de signalisation DL-MAP et UL-MAP. Ces messages sont émis au début de la sous-trame en lien descendant. Quand la SS reçoit un message de gestion UL-MAP, elle détermine si elle peut accéder au lien montant au cours de la trame courante.

L’ordonnanceur utilisé dans le système WIMAX peut être issu du monde du réseau fixe ou spécifiquement conçu pour un réseau WIMAX. Différentes stratégies peuvent en effet être employées, variant d'un simple Round Robin (RR) [13] qui ne considère pas les conditions de la partie radio, au « maximum Signal-to-Noise Ratio » (mSIR), « Temporary Removal Scheduler » (TRS) et le « Earliest Deadline First » (EDF) [14] qui tiennent compte de certains paramètres de QoS comme la qualité du signal radio et le temps de latence.

2.3.1 Les ordonnanceurs classiques utilisés dans WIMAX

2.3.1.1 Ordonnanceurs systématiques

Dans cette section, nous présentons quelques ordonnanceurs qui servent systématiquement tous les abonnés, sans tenir compte de leurs caractéristiques de QoS ni des conditions du canal radio.

« Round Robin » (RR) : L’ordonnanceur RR, également appelé ordonnanceur cyclique, distribue équitablement les ressources du canal aux demandes des paquets de données multiplexés ou aux sessions. Cette technique est appropriée si les abonnés ont le même type de trafic et les mêmes conditions radio. Néanmoins, étant données que ces conditions varient d'un utilisateur à un autre dans le contexte d'un réseau mobile, ce type de scheduling n'est pas efficace dans ce contexte.

en faisant attention à ce que l'algorithme d'attribution de poids/priorité reflète au mieux l'état conjoint du trafic/ressources.

« Deficit Round Robin » (DRR): L'ordonnanceur DRR [17] fait de l'allocation par paquet. En effet, DRR alloue virtuellement un certain montant de ressources à chaque connexion. L'ordonnanceur DRR a besoin comme information d'entrée du taux minimal qui sera réservé à chaque flux. Cette caractéristique peut être utile dans un réseau WIMAX, car certaines classes de QoS ont besoin d'un débit minimal réservé.

2.3.1.2 Ordonnanceurs prenant en compte les conditions du canal radio

Dans cette section, nous présentons les ordonnanceurs capables de tenir compte des conditions radio du canal.

« Maximum Signal-to-Interference » (mSIR): L'ordonnanceur mSIR alloue les ressources radio proportionnellement au rapport signal sur bruit (« Signal to Noise Ratio SNR ») des SS. Par conséquent, mSIR offre une meilleure gestion du spectre. Néanmoins, les SS ayant un faible SIR risquent de ne jamais être servi.

« Temporary Removal Scheduler » (TRS): TRS [18] permet de déterminer l'ensemble des SS qui peuvent être satisfaits. Cet ensemble est appelé la liste d'ordonnancement. Les SS ayant de mauvaises conditions radio sont temporairement bloquées. Le TRS fonctionne comme suit : il identifie les paquets ayant un SNR inférieur à un seuil défini. Ces paquets sont temporairement retirés de la liste d'ordonnancement pour une certaine période de temps Tr puis réinsérés. Ce processus est répété jusqu'à ce que les conditions radio soient meilleurs.

Le TRS se comporte particulièrement bien lorsque les conditions radio du canal sont fluctuantes. Il doit être cependant combiné avec un autre ordonnanceur afin de déterminer les ressources à attribuer à chaque SS appartenant à la liste de scheduling.

« Opportunistic Deficit Round Robin » (O-DRR): Dans [19], O-DRR est utilisé au niveau de la BS sur le lien montant. O-DRR opère comme suit : La BS envoie périodiquement des allocations à toutes les SS tous les k trames. Après chaque période, appelée période d'ordonnancement, la BS détermine l'ensemble des SS qui peuvent transmettre ainsi que leurs besoins en bande passante. En effet, une SS peut transmettre si elle dispose d'une file d'attente non vide, et que le rapport signal sur interférence et bruit (SINR) se trouve au-dessus d'un seuil minimal.

La liste des SS est modifiée dynamiquement en fonction des changements de l'état de la liaison radio de chaque SS. Au début d'une nouvelle période de scheduling, la BS réinitialise cette liste et exécute le même processus à nouveau.

25
2.3.2 Les ordonnanceurs spécifiquement proposés pour le WIMAX

Dans cette section, nous présentons quelques ordonnanceurs tenant compte, partiellement ou intégralement, de la qualité de service du WIMAX. Ces ordonnanceurs sont proposés spécifiquement pour les systèmes WIMAX et prennent en compte les caractéristiques des classes de QoS.

2.3.2.1 Ordonnanceurs proposés pour une classe de service spécifique

« Adaptive rtPS Scheduler » : Cet ordonnanceur [20] est utilisé uniquement pour la classe rtPS sur la prévision de l'arrivée de paquets. Pour la classe rtPS, les paquets qui arrivent après une allocation satisfaite par la BS doivent attendre la prochaine allocation pour être envoyés car les allocations ne peuvent s'effectuer qu'à la demande. Ceci introduit par conséquent un délai supplémentaire pour ces paquets.

Pour pallier à ce problème, l'ordonnanceur rtPS adaptatif propose un algorithme de prédiction stochastique pour estimer l'arrivée des données rtPS afin d'anticiper les allocations futures pour ce type de trafic.

« Adaptive Bandwidth Allocation Scheme » (ABAS) : Le schéma d'allocation ABAS proposé dans [15] vise à déterminer dynamiquement le meilleur rapport entre la bande passante en lien descendant et montant. La BS détermine tout d'abord les différentes informations des connexions telles que les demandes de bande passante le nombre de slots attribués aux sous-trames sur les liens descendant / montant, respectivement. La BS ajuste sur la base de ces informations la répartition entre les deux parties de la trame. La décision d'ordonnancement est par la suite transmise au différentes SS en utilisant les messages MAC de gestion DL-MAP et UL-MAP. Le mécanisme est répété au début de chaque trame. ABAS est proposé pour la classe BE en supposant que toutes les connexions ont les mêmes conditions du canal.

2.3.2.2 Ordonnanceurs proposés pour plusieurs classes de service QoS

« Uplink packet scheduler with a Token Bucket Call Admission Control (CAC) mechanism » : Dans [21], un ordonnanceur en lien montant avec contrôle d'admission est proposé. Le mécanisme CAC est basé sur le principe du « Token Bucket ».

L'algorithme d'ordonnancement fonctionne comme suit: toutes les connexions UGS sont accordées. Par la suite, le CAC est appliqué aux paquets rtPS. Afin de servir les paquets les plus prioritaires, l'ordonnanceur EDF (« Earliest Deadline First ») attribue les priorités aux différents paquets en fonction de leurs temps de validité. Après avoir servi les connexions UGS et rtPS, la BS attribue TnrtPS symboles aux connexions nrtPS, ensuite, TBE symboles aux connexions BE. La bande passante résiduelle est allouée équitablement entre les connexions nrtPS et BE.

Pour les connexions UGS, l’ordonnanceur doit garantir un nombre constant de slots au cours de toute la période de service. Pour les connexions rtPS et nrtPS, l’ordonnanceur doit garantir le temps de latence et le débit minimal réservé respectivement. Pour les connexions BE, il n’y a aucune garantie de qualité de service mais un taux d’erreur des paquets(PER) devrait être maintenu.

« Hybrid Scheduling Algorithm » : L’algorithme hybride proposé dans [23] utilise deux ordonnanceurs différents. L’ordonnanceur EDD est utilisé pour les services temps réel tandis que l’ordonnanceur WFQ est utilisé pour les services non-temps réel. EDD est basé sur la priorité dynamique. Dans une file d’attente EDD, les paquets sont classés par ordre de leurs temps de validité. WFQ alloue les ressources radio en fonction des différentes connexions. Puis, l’ordonnanceur WFQ peut fournir le débit nécessaire pour chaque connexion en attribuant des valeurs proportionnelles aux différents poids.

Nous avons vu dans cette section que l’ordonnancement, peut être classique, peut tenir compte des conditions radio et peut tenir compte d’une classe de service quelconque. Par contre, ces ordonnanceurs ne peuvent pas prendre en compte les paramètres d’une application temps réel telle que le streaming vidéo pour une meilleure allocation de ressources.

En effet, le but principal de nos travaux est de permettre une certaine adaptabilité et scalabilité des applications vidéo en fonction des conditions réseaux, notamment en termes de ressources radios. Les ordonnanceurs présentés ci-dessus ne répondent pas à toutes les contraintes. En premier lieu, les ordonnanceurs classiques traitent toute les classes de service de la même façon, ainsi, la classe rtPS n’aura pas de traitement spécial. Ensuite, les ordonnanceurs dédiés aux réseaux WIMAX mais qui sont une solution pour plusieurs classes de service, ne font que définir un ordre de priorité entre les classes.

Finalement, l’ordonnanceur dédié à la classe rtPS défini plus haut est une approche de prédiction pour estimer les prochaines allocations pour ce type de trafic, mais cet ordonnanceur n’a aucune idée de la nature de l’application relative au flux rtPS concerné. En particulier, les applications de streaming vidéo que nous considérons dans cette thèse, sont dotées d’une élasticité et d’une capacité d’adaptation afin de changer de débit vidéo émis depuis le serveur. Ainsi, dans nos approches, nous ajoutons des fonctionnalités au niveau de l’ordonnanceur pour la prise en compte d’une telle propriété. Dans le cas de pénurie de ressources par exemple, l’ordonnanceur détecte les flux rtPS (type vidéo) « élastique » ou « scalable » et leur demandera de réduire leur débit vidéo.
2.4 IEEE 802.16j (Mobile Multi hop Relay)

2.4.1 Introduction

Les systèmes à base de relais comprennent généralement des relais qui sont associés à des stations de base spécifiques. Ils peuvent être utilisés pour étendre la zone de couverture d’une BS et/ou augmenter la capacité d’un système d'accès mobile [80] [81]. En règle générale, ils sont intégrés dans la conception des solutions dès les premières phases de déploiement du réseau afin d’améliorer la zone de couverture d’une solution mono BS à moindre coût, ils peuvent aussi être utilisés pour augmenter la capacité de réseaux déjà déployés typiquement dans les zones denses.

L’IEEE 802.16j est un groupe de travail au sein du 802.16 dont l'objectif est de développer une extension des standards 802.16 et 802.16d afin de supporter la fonctionnalité de relais fixe et mobile. Dans cette section nous présentons un aperçu des aspects les plus importants de la version actuelle de la norme 802.16j.

2.4.2 L’initiative et la motivation de standardisation de l’IEEE 802.16j

Le standard 802.16j est développé pour intégrer le mode relai dans les réseaux 802.16 afin de réduire les coûts opérationnels et d'investissement (OPEX/CAPEX) et en conséquence faciliter les déploiements. Pour ce faire, le groupe de travail 802.16j vise à définir des stations de relais RS avec une complexité nettement inférieure à celle d’une BS 802.16e-2005. Les deux principaux cas d'utilisation du 802.16j consistent en l'augmentation de la couverture et l'amélioration de la capacité. La première utilisation peut être divisée en deux sous-cas légèrement différents: l'extension de la zone de couverture d'une BS en utilisant des techniques multi-sauts et le traitement des problèmes de saut de couverture (par exemple, les ombres des bâtiments). Le deuxième cas d'usage est l'augmentation de la capacité du système qui peut être réalisée grâce à l'utilisation des liens multiples avec une plus grande efficacité. De plus, la solution multi-sauts permet la réutilisation spatiale de fréquences, ce qui résulte en l'augmentation de la capacité du système global.

2.4.3 Spécifications de l'IEEE 802.16j

2.4.4 Les modes de relais

La norme définit deux modes de fonctionnement pour les relais : le mode transparent et le mode non transparent. La principale différence entre ces deux modes de fonctionnement du relais est de savoir comment les trames d'information sont transmises : en mode transparent, le relais ne transmet pas les informations d'entête de la trame, alors qu’en mode non-transparent, ils sont transmis. L'entête de la trame contient des
informations d'ordonnancement essentielles pour les nœuds afin de déterminer à quel moment ils peuvent transmettre et recevoir des informations. Cette différence donne lieu à des caractéristiques très différentes entre les deux modes de fonctionnement.

En association avec le mode de relais, il existe deux options différentes pour l'ordonnancement: centralisées et distribuées. Dans le premier cas, l'ordonnancement pour tous les nœuds dans le système est effectué par la BS, alors que dans le second cas, les RS (Relay Station) ont une certaine autonomie et peuvent prendre des décisions d'ordonnancement pour les nœuds avec lesquels ils communiquent.

Le mode transparent: Dans ce mode, les RS ne transmettent pas d'informations d'en-tête sur la trame, et ainsi ne permettent pas d'augmenter la zone de couverture. Par conséquent, le cas d'utilisation principale des relais en mode transparent est l'augmentation des capacités au sein de la zone de couverture de la BS. Ce type de relais est doté d'une complexité réduite, et fonctionne uniquement dans un mode d'ordonnancement centralisé dans le cadre d'une topologie à deux sauts maximum.

Le mode non-transparent: Les RS génèrent leurs propres informations d'en-tête dans la trame, ou transmettent celles prévues par la BS selon l'approche d'ordonnancement (distribuée ou centralisée). Ils sont principalement utilisés pour augmenter la couverture. D'autre part, la transmission des informations d'en-tête de la trame peut provoquer un niveau d'interférence élevé entre les RS voisines, par conséquent, sans conception efficace, le renforcement des capacités, qui peut être obtenu en utilisant ces relais est limité. Les relais non-transparents peuvent fonctionner dans des topologies de plus de deux sauts en mode d'ordonnancement centralisé ou distribué, conduisant à différents niveaux de complexité de la RS.

Puisque les relais transparents (T_RS) et les relais non-transparents (NT_RS) ont des avantages différents, il peut y avoir certains scénarios dans lesquels il est logique d'associer les deux modes avec une BS unique. Cependant, la norme donne peu de détails sur la façon de réaliser cela. Le Tableau 2-2 illustre la différence entre les deux modes de relais.

<table>
<thead>
<tr>
<th></th>
<th>RS transparente</th>
<th>RS non Transparente</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension de la couverture</td>
<td>Non</td>
<td>Oui</td>
</tr>
<tr>
<td>Nombre de sauts</td>
<td>2</td>
<td>2 ou plus</td>
</tr>
<tr>
<td>Interférence entre RS</td>
<td>Aucune</td>
<td>importante</td>
</tr>
<tr>
<td>Performance</td>
<td>Dans la zone de la BS : élevé</td>
<td>Dans la zone de la BS : comme en 802.16e</td>
</tr>
<tr>
<td></td>
<td>Hors de la zone de la BS : ____</td>
<td>hors de la zone de la BS : moyenne</td>
</tr>
<tr>
<td>Coût de la RS</td>
<td>faible</td>
<td>élevé</td>
</tr>
<tr>
<td>Ordonnancement</td>
<td>Uniquement centralisé</td>
<td>Centralisé ou distribué</td>
</tr>
</tbody>
</table>

Tableau 2-2. Comparaison entre mode de relais transparent et non transparent
2.4.5 Spécifications de la couche PHY : structure de la trame

Comme la structure de trame, définie dans les précédentes normes 802.16, a été conçue pour opérer dans un système à un seul saut, des modifications ont été nécessaires pour supporter le relai. Comme pour l’ancienne structure de trame 802.16, la trame est divisée en deux sous-trames : une en liaison descendante (DL) et une autre en liaison montante (UL). Toutefois, contrairement à la structure de trame précédente, ces sous-trames sont divisées en zones pour les communications RS-BS et RS-SS : la différence de zones facilite les communications entre les différentes parties du système.

Dans les deux modes transparents et non transparents, les zones d'accès (« Access Zone ») sont définies pour supporter la communication entre BS ou NT_RS et SS ou T_RS. Dans le mode transparent une zone dite zone transparente (« Transparent Zone ») est définie pour les communications entre T_RS et SS. Dans le mode non transparent, les zones de relais sont définies pour les communications entre BS ou NT_RS et NT_RS. Les Figure 2-12 et Figure 2-13 illustrent la structure de la trame pour le mode non transparent du côté de la BS et de la RS respectivement.

![Figure 2-12 : Structure de la trame en mode relais non transparent vue par la BS](image1)

![Figure 2-13 : Structure de la trame en mode relais non transparent vue par la RS](image2)
2.4.6 Spécifications de la couche MAC

Trois différents aspects de la couche MAC sont présentés ci-dessous : le modèle de transmission (« Forwarding Scheme »), le routage et les mécanismes de gestion des chemins (« Path Management »), et les mécanismes d'entrée en réseau (« Network Entry »).

2.4.6.1 Les modèles de transmission

Deux modèles de transmission différents sont définis, les deux étant destinés à maximiser la capacité du système par l'agrégation de trafic lorsque cela est possible : le mode de transmission à base de tunnel et le mode de transmission à base de connexion CID. Cette agrégation de trafic a deux principaux avantages: il peut en résulter des gains en efficacité du système puisque moins d'information de signalisation est envoyée, et il en résulte une gestion plus simple puisque plusieurs groupes de flux peuvent être traités ensemble.

La transmission à base de tunnel fournit un support pour les tunnels explicite caractérisé par : un CID unique, deux points d’extrémité spécifiques, et un besoin en qualité de service. Le modèle à base de CID n'a pas de tels tunnels et ne supporte pas explicitement l'agrégation de trafic, mais nécessite moins de complexité. Dans l'approche à base de tunnel, les tunnels sont utilisés pour agréger le trafic des MS sur la connexion entre RS et BS pour des connexions de gestion ou de transport avec des exigences de qualité de service similaires. L'approche à base de CID, d'autre part, ne supporte que les connexions de gestion et de transport tels que définis dans la norme 802.16e. Ces deux modèles peuvent être différenciés en termes de gestion de la QoS, de gestion des erreurs, et de la charge ajoutée.

2.4.6.2 Routage et gestion des routes

Comme les réseaux 802.16j comportent des routes multi-sauts entre la BS et la MS, la question du routage et de la gestion des routes se pose. Bien que le routage dans de tels systèmes est à base de structure d’arbre, il peut y avoir des décisions à prendre concernant l’association d’une RS et d’une MS. La gestion de routes renvoie à des questions relatives à l'établissement d'une route, l'entretien, et la libération pour laquelle différentes techniques de gestion de routes ont été proposées.

Routage et sélection de route : La norme prévoit des décisions de routage en fonction des paramètres tels que la disponibilité des ressources radio, la qualité du lien radio, et la charge de trafic vers les RS, mais la norme n'indique pas la façon dont la décision doit être prise, les détails de la décision de sélection de route sont laissés aux fournisseurs. La norme définit deux approches de gestion des routes : une approche intégrée et une approche explicite. La principale différence entre ces deux approches réside
dans la façon dont les informations de signalisation pour gérer la route sont distribuées dans le système.

2.4.6.3 Procédure d’entrée en réseau

Il y a deux aspects différents pour l’entrée en réseau dans 802.16j ; les procédures d’entrée en réseau pour les MS et les procédures d'entrée en réseau pour les RS. Comme la norme 802.16j doit maintenir la compatibilité avec les terminaux WIMAX existants, la procédure d'entrée en réseau vue par le terminal doit rester inchangée. Toutefois, il existe des différences sur la façon dont la BS et les RS utilisent cette procédure venant du fait que le réseau a besoin de déterminer quel nœud doit être le nœud d'accès pour la MS. Le processus d'initialisation (« initial ranging ») dans les systèmes 802.16j varie en fonction du mode d'ordonnancement et du mode de relais: les différents processus d'initialisation peuvent être distingués comme suit:

Initialisation d'une MS dans le mode de relais transparent : Les RS écoutent le canal d'initialisation de la zone d'accès en UL et transmettre les codes d'initialisation qu'ils reçoivent vers la BS. La BS attend un délai déterminé pour recevoir d'autres messages avec le même code d'initialisation, à partir d'autres RS et détermine en conséquence la route la plus appropriée pour la station (à savoir, directement ou via une interface RS). Si la route d'accès direct est choisie, la BS envoie une réponse directement à la MS. Sinon, la réponse est envoyée à la RS qui la transmet, ensuite, à la MS.

Initialisation d'une MS dans le mode de relais non transparent : En raison des contraintes existantes, la MS choisit la BS ou le NT_RS avec le plus fort préambule détecté. Cela signifie qu'il n'y a pratiquement aucune décision de routage à faire dans ce cas. Comme c'est la BS qui rend la décision finale d'entrée en réseau, la RS doit communiquer avec la BS pour s'assurer que la MS est autorisée à entrer dans le réseau. Dans le cas centralisé cela implique la communication de toutes les informations d'initialisation à la BS, mais dans le cas distribué la RS gère les fonctions d'initialisation et fait simplement une requête d'entrée au réseau à la BS.

Le processus d'entrée en réseau pour les RS comprend des étapes supplémentaires et définit un processus d'initialisation spécifique. Plus précisément, l'entrée en réseau est complétée par une découverte de voisinage et le processus d'évaluation suivi par un algorithme de sélection de route afin de déterminer la station d’accès la plus appropriée pour la RS.

Dans la prochaine section, nous décrivons la nature des applications de type streaming vidéo. Nous présentons les différents protocoles multimédia et les différents codages vidéo afin d'identifier les caractéristiques et les contraintes de ce type d’application, notamment, dans le cadre d'une transmission au sein d’un réseau sans fil tel que le WIMAX.
2.5 Les applications de streaming vidéo

Dans le cadre de notre étude, nous nous sommes intéressés aux applications de streaming vidéo qui, à l’opposé du téléchargement vidéo, permettent la visualisation d’un flux vidéo au fur et à mesure de sa réception. Les applications de streaming permettent la diffusion de flux vidéo temps réel. Le streaming sur les réseaux IP se base principalement sur deux modes de transmission : l’unicast et le multicast. Le premier mode nécessite la duplication d’un flux vidéo pour chaque récepteur et dans le deuxième mode, un flux est transmis pour un groupe de récepteurs (vidéoconférence).

Actuellement, les applications de streaming vidéo souffrent du manque de QoS dans les réseaux IP qui affecte la transmission des paquets et dégrade, par la même, la qualité de la vidéo perçue par le récepteur. De plus, l’hétérogénéité grandissante dans les réseaux IP oblige ces applications à s’adapter à plusieurs paramètres, comme le débit du réseau d’accès, les capacités du terminal récepteur, etc.

2.5.1 Les protocoles multimédia

Le rôle principal des protocoles multimédia est de fournir des fonctionnalités de base aux applications pour le contrôle, la description et la transmission de flux multimédia. Une brève description de chaque protocole est présentée ci-dessous :

- **RTSP (« Real Time Streaming Protocol »)** [27] : RTSP est un protocole de niveau applicatif qui permet l’établissement et le contrôle d’une session multimédia entre un client et un serveur afin de transmettre un, ou plusieurs, flux audio/vidéo en unicast ou en multicast.

- **SDP (« Session Description Protocol »)** [28] : SDP définit un format pour la description d’une session multimédia. La description inclut plusieurs informations, comme le nom de la session, sa durée, les flux multimédia qu’elle contient et les informations nécessaires à la réception de ces flux.

- **SAP (« Session Announce Protocol »)** [29] : SAP est utilisé pour annoncer une session multimédia multicast et transmettre la description de cette session aux futurs participants.

33
• **RTP/RTCP (« Real Time Protocol »/ »Real Time Control Protocol »)** [30] :
RTP est un protocole de niveau applicatif qui offre des fonctions de transport de bout-en-bout pour les flux multimédia.

2.5.2 **Les standards de codage vidéo et le codage vidéo hiérarchique**

La majorité des standards de codage vidéo ont été développés par deux organismes de standardisation : MPEG (« Moving Pictures Expert Group ») de ISO/IEC et VCEG (« Video Compression Expert Group ») de l’ITU-T (« International Telecommunication Union – Telecommunications »). Une brève description de ces standards est donnée ci-dessous :

- **H.261** [31] : Défini en 1990 par le groupe VCEG, il a été utilisé principalement pour la vidéoconférence sur les réseaux ISDN (« Integrated Services Digital Network »).
- **MPEG-1** [33] : Publié par le groupe MPEG en 1991, il a été développé principalement pour le stockage des vidéos sur des supports numériques (CD-ROM) avec un débit vidéo de 1.5 Mbits/s
- **MPEG-2 / H.262** [34] : Publié en 1994, il permet une très grande flexibilité de formats et des débits vidéo élevés pour la HDTV (« High-Definition Television ») et la SDTV (« Standard-Definition Television »).
- **MPEG-4 Part-2** [35] : Publié en 2000 par le groupe MPEG, il représente le premier codec vidéo orienté objet développé principalement pour les applications multimédia interactives.

Actuellement, les efforts sont orientés vers le codage vidéo hiérarchique SVC (« Scalable Video Coding ») [37] afin de répondre aux besoins des nouvelles applications multimédia qui doivent transmettre des flux vidéo sur des réseaux hétérogènes. Contrairement aux codecs précédents, qui génèrent un seul flux vidéo avec une seule couche, le SVC génèrent plusieurs flux correspondant à plusieurs couches hiérarchiques, une couche de base (BL : « Base Layer ») et une ou plusieurs couches d'amélioration (EL : « Enhanced Layer »). La couche de base se suffit à elle-même pour le décodage, mais le
Les applications de streaming vidéo

décodage des couches supérieures nécessite le décodage de la couche de base. La définition du nouveau standard SVC se base sur l'architecture H.264/AVC. Les couches hiérarchiques peuvent être construites sur trois dimensions :

- **La hiérarchie temporelle** : Correspond à différents nombres d'images par seconde (frame rate). La couche de base est constituée des images I (« Intra-coded frame ») et P (« Predicatively coded frame ») et les couches d'amélioration sont constituées d'images B (« Bi-directionally predicted frame ») insérées entre les images I et P.

- **La hiérarchie spatiale** : Correspond à différentes dimensions d'image. Les couches supérieures fournissent une plus grande taille d'image.

- **La hiérarchie en qualité (SNR)** : Correspond à différentes qualités d'images. Les couches supérieures permettent d'obtenir une qualité plus fine de l’image avec plus de précision.

En tronquant les couches supérieures, les applications multimédia peuvent mieux s'adapter à différents paramètres. Par exemple, le débit disponible dans le réseau en utilisant la hiérarchie en qualité ou la capacité d'affichage d'un terminal en utilisant la hiérarchie spatiale.

2.5.3 L'adaptation de la QoS pour la transmission vidéo

La transmission des paquets vidéo doit considérer les paramètres principaux qui caractérisent les réseaux IP, à savoir le débit, les pertes de paquets, le délai de bout-en-bout et la gigue. Durant ces dernières années, plusieurs techniques ont été utilisées par les applications multimédia afin de palier aux variations de ces facteurs et de minimiser leurs effets sur la qualité de la vidéo perçue par le récepteur. Nous détaillons dans ce qui suit quelques travaux qui permettent principalement d'adapter le débit de la vidéo en fonction du débit disponible dans le réseau :

- **Simulstore** [38] : La solution Simulstore propose de stocker sur un serveur plusieurs flux d'un même contenu avec différentes caractéristiques spatiales, temporelles et de qualité (SNR). Le bon flux est choisi et transmis en fonction du débit de l'utilisateur. Cependant, cette solution est statique et ne peut pas s'adapter au changement dynamique du débit durant la transmission.

- **Transcoding** [39] [40] [41] : Le transcoding permet de transformer une vidéo d’un format vers un autre en changeant la taille de l’image, le nombre d’images par seconde, la qualité de la vidéo ou le débit. Cette solution ne nécessite pas un grand espace de stockage, par contre, elle consomme énormément de ressource de calcul pour exécuter le transcodage. De plus, elle introduit une latence supplémentaire qui peut être contraignante pour les services multimédia interactifs.
• **SVC – « Scalable Video Coding »** [37] : Le codage hiérarchique, décrit plus haut, permet le codage de la vidéo en plusieurs couches hiérarchiques, une couche de base et plusieurs couches d’amélioration. L’adaptation s’effectue simplement en supprimant une ou plusieurs couches d’amélioration. Plusieurs travaux se sont intéressés à ce type d’adaptation qui peut supporter la montée en charge [42] [43] [44]. L’inconvénient du codage hiérarchique est la dépendance des couches supérieures de la couche de base lors du décodage, ce qui nécessite la bonne réception de la couche de base.

• **MDC – « Multiple Description Coding »** : Avec le codage MDC, une vidéo est codée en plusieurs descriptions, ou flux, indépendants. Le MDC possède deux propriétés importantes : (1) Chaque flux peut être décodé indépendamment des autres en donnant une certaine qualité de vidéo, (2) les informations des flux sont complémentaires ce qui permet d’augmenter la qualité de la vidéo en augmentant le nombre de flux décodés simultanément. Plusieurs algorithmes de codage MDC ont été proposés dans plusieurs travaux [45] [46] [47]. D’autres travaux [49] [50] [51] [52] se sont intéressés à l’exploitation de ce type de codage dans des architectures de transmission vidéo.

En plus de l’impact du débit du réseau, les pertes de paquets vidéo affectent considérablement la qualité de la vidéo. La dégradation de la qualité est accentuée par l’effet de la propagation des erreurs [53] due à la dépendance du décodage des images I, P et B. Ci-dessous, nous présentons quelques mécanismes qui ont été développés afin de faire face aux pertes de paquets et de minimiser leur impact sur la qualité de la vidéo.

• **ARQ (« Automatic Repeat reQuest »)** [54] [55] : La retransmission des paquets vidéo perdus est considérée comme un mécanisme simple. L’utilisation d’ARQ suppose la présence d’une voie de retour entre l’émetteur et le récepteur. Cependant, la retransmission introduit une latence supplémentaire. De plus, la mise en place d’un mécanisme ARQ pour les transmissions multicast est complexe et sa mise à l’échelle est limitée à cause du nombre d’acquittements que peut recevoir le serveur.

• **FEC (« Forward Error Correction »)** : Le mécanisme FEC ajoute des paquets de redondance aux flux de paquets original, au niveau de l’émetteur, afin de permettre au récepteur de reconstruire les paquets perdus [56] [57]. Les paquets redondants sont générés par des codes correcteurs traditionnels (Reed Solomon, etc.) en considérant un paquet comme étant un symbole. Le principal inconvénient de la FEC est la consommation additionnelle du débit due à l’ajout de données redondantes.

• **UEP (« Unequal Error Protection »)** [59] [60] : Le UEP offre une protection différente des paquets vidéo. Il se base principalement sur le codage hiérarchique où la
Les mécanismes Cross-Layer pour les réseaux WIMAX

2.6 Les mécanismes Cross-Layer pour les réseaux WIMAX

2.6.1 Le concept du Cross-layer

Le modèle OSI définit une architecture en couches avec une hiérarchie de services. Cependant, cette méthode ne conduit pas nécessairement à une solution optimale, notamment pour les réseaux sans fil. La recherche sur les mécanismes Cross-Layer dans les réseaux sans fil a été stimulée par le fait que l'état du canal sans fil varie au cours du temps et que les ressources limitées sont partagées par plusieurs utilisateurs.

Le concept de Cross-layer permet la définition de protocoles ou de mécanismes qui violent l'isolation des couches du modèle OSI. Ainsi, il autorise la communication entre deux, ou plusieurs couches dans le but d'améliorer les performances globales du système.

Ceci peut être réalisé par la définition de nouvelles interfaces au niveau des couches qui permettent de récupérer leurs paramètres de performances. Ces paramètres peuvent être utilisés par les mécanismes d'adaptation pour améliorer la performance globale de la communication en se basant sur des politiques d'adaptation.

couche de base doit être mieux protégée contre les pertes, comparée aux couches d'amélioration.

• « Errors concealment » [61] : Cette technique opère au niveau image en essayant d'estimer les informations, ou pixels, perdues à partir d'informations correctement reçues. Pour cela, elle se base sur la forte corrélation spatiale et temporelle qui existe dans les images vidéo et qui est exploitée par les algorithmes de codage.

Dans cette section, nous avons vu les différentes caractéristiques des applications de type streaming vidéo ainsi que les différents travaux réalisés pour l'adaptation du débit de ces applications en fonction du débit du réseau et pour palier aux problèmes causés par les pertes des paquets vidéo.

Pour une meilleure adaptation et optimisation des applications de streaming vidéo au sein d'un réseau, ces applications devraient avoir une idée sur les caractéristiques du réseau concerné. La connaissance de l'état et de la qualité du réseau, spécialement dans le cas de réseaux sans fil, permettrait à ces applications d'adapter leur comportement.

Cela peut être réalisé à l'aide de nouveaux mécanismes qui permettent une meilleure communication entre les différentes couches du réseau dans le but d'améliorer la performance globale du système. Dans la prochaine section, nous décrivons ce type de mécanismes que sont les Cross-Layers.
2.6.2 La communication dans les architectures Cross-Layer

Le principe de base du concept Cross-layer est de permettre l'échange d'informations entre les couches adjacentes et non adjacentes afin d'améliorer les performances de transmission. Parmi toutes les architectures Cross-layer proposées dans la littérature, deux modèles de communication peuvent être distingués [62] [63] : La communication directe entre les couches ou la communication via une base de données partagée entre les couches.

- Communication directe entre les couches

La communication directe entre les couches est le modèle le plus utilisé par les architectures Cross-layer. Il permet à une couche d'accéder directement aux paramètres et aux variables d'une autre couche sans passer par un intermédiaire.

Cette communication peut être « in-band » en utilisant les en-têtes des protocoles existants, ou « out-of-band » en utilisant un nouveau protocole de signalisation tel que CLASS (Cross-layer signaling shortcuts) [64]. La communication « out-of-band » peut s'effectuer aussi en définissant de nouvelles interfaces qui seront utilisés directement pour récupérer et configurer des paramètres de fonctionnement [65].

- Communication via une base de données partagée

Plusieurs architectures Cross-layer [66] [67] proposent l'utilisation d'une base de données partagée afin de stocker et de récupérer des paramètres. Cette base est accessible par toutes les couches qui peuvent, ainsi, s'informer de l'état des autres couches ou récupérer des paramètres de configuration nécessaires à leur fonctionnement interne.

2.6.3 Les approches du Cross-Layer

Dans la littérature, plusieurs techniques Cross-layer ont été proposées pour améliorer les performances des transmissions sans fil. Au début, ces mécanismes étaient limités à l'interaction entre la couche physique et la couche liaison de données. Par la suite, nous avons assisté à l'apparition de plusieurs travaux proposant des interactions avec les couches supérieures, prenant en charge plusieurs paramètres, pour une optimisation globale. Ces travaux peuvent être classés en trois approches identifiées dans [62] [68]: L’approche ascendante (Bottom-up) où les couches supérieures optimisent leurs mécanismes en fonctions des paramètres des couches inférieures, l’approche descendante (Top-down) où les couches inférieures considèrent certaines spécificités de niveau applicatif pour exécuter leurs traitements, et l’approche mixte (Integrated) qui exploite les deux approches précédentes dans une même architecture afin de trouver la meilleure configuration inter-couches pour un fonctionnement optimal du système.
• **Les approches ascendantes (Bottom-up)**

Dans [69] les auteurs proposent un algorithme pour l’allocation de ressources dans les réseaux 3G. En effet, la variation du canal de transmission et la diversité multiutilisateur est exploitée pour fournir des services en continu uniquement aux MS dont la qualité du canal de transmission est élevée. La MS, dont l’état instantané du canal est faible, reporte ses transmissions jusqu’à ce que son canal change d’état afin de ne pas pénaliser les autres MS.

Un algorithme d’ordonnancement se basant sur l’état du canal (CSI : Channel State Information) a également été proposé pour les réseaux satellitaires dans [70]. L’algorithme est implémenté au niveau liaison de données et exploite l’état du canal satellitaire pour décider de l’envoi d’un paquet. Le canal est aussi modélisé par deux états : bon état et mauvais état.

Les auteurs dans [71] explorent une architecture Cross-layer pour la transmission des flux vidéo sur des réseaux sans fil. L’architecture Cross-layer proposée maintient la structure en couche et identifie les principaux paramètres qui peuvent être échangés entre ces couches. Ainsi, une technique d’adaptation est proposée au niveau liaison de données qui détermine la taille optimale d’un paquet en fonction de la modulation et du codage qui sont à leur tour adaptés en fonction du SINR (Signal-to-Interference-plus-Noise Ratio).

• **Les approches descendantes (Top-down)**

L’ordonnancement optimal pour minimiser la congestion et la distorsion (CoDiO : Congestion-Distortion Optimized) est l’une des principales techniques dans les approches descendantes étudiées dans plusieurs travaux [71] [72] [73]. La distorsion correspond à la différence de qualité entre la vidéo encodée, côté émetteur, et la vidéo décodée, côté récepteur. Le CoDiO vise à minimiser cette distorsion suivant les contraintes du débit disponible dans le réseau.

Dans [74], les auteurs proposent une optimisation des performances du protocole TCP sur les réseaux sans fil 3G. Cette optimisation propose une variation de plusieurs paramètres au niveau de l’accès réseau afin de les faire correspondre au débit calculé au niveau TCP.

Dans [75], les auteurs soulèvent le problème de la retransmission (ARQ) qui peut être présent au niveau liaison de données et au niveau transport. En effet, la présence de ce mécanisme au niveau liaison de données introduit un délai de transmission désagréable pour les flux temps réel. Pour y faire face, les auteurs proposent un système ARQ adaptatif qui permet de fournir un ARQ personnalisé en fonction des besoins des applications.
• **Les approches mixtes (Integrated)**

Dans [76], les auteurs présentent une architecture Cross-layer pour analyser, sélectionner et adapter les différentes stratégies présentes sur les couches du modèle OSI. Ceci dans le but d’augmenter la qualité des flux multimédia, de préserver la consommation d’énergie des terminaux et d’optimiser l’utilisation spectrale des canaux de transmission.

L’optimisation Cross-layer a pour but de sélectionner la meilleure stratégie qui offre la meilleure qualité de service pour les flux multimédia sous les contraintes des transmissions sans fil ainsi que les contraintes du système.

Dans [66], CrossTalk est proposée pour les réseaux ad hoc. Son objectif est de préserver la structure en couches tout en permettant des améliorations de performance. Le concept fournit une vue globale de l’état du réseau en utilisant plusieurs métriques présentes sur différentes couches. Cette vue globale permettra à chaque nœud réseau de comparer son état local avec l’état global du réseau afin d’appliquer les adaptations nécessaires.

Dans [77], les auteurs proposent un nouveau mécanisme de protection Cross-layer qui fournit une QoS adaptative en exploitant conjointement le codage en couches des vidéos, les files d’attente prioritaires au niveau de la couche réseau et l’adaptation de la retransmission au niveau liaison de données des réseaux sans fil. Le mécanisme Cross-layer proposé a pour but de trouver un compromis entre le nombre de retransmissions (ARQ), et la taille des files d’attente au niveau de la couche réseau.

Dans [67] [78] [79], une stratégie d’optimisation Cross-layer est proposée. Cette stratégie permet d’optimiser conjointement le fonctionnement des couches application, liaison de données et physique. L’optimisation Cross-layer dans cette nouvelle stratégie est pilotée par la couche applique puisque l’objectif principal est de maximiser la satisfaction de l’utilisateur en relation directe avec l’application.

Dans les approches ascendantes, nous avons vu que le Cross-Layer intervient pour prendre une décision de transmettre un flux de données multimédia par exemple uniquement aux clients qui possèdent de bonnes conditions radios, ou encore exclure ou modifier la taille de certains paquets du flux en question. Par conséquent, les flux vidéo auxquels nous nous intéressons et qui sont très sensibles à la perte, ne peuvent pas être traités convenablement par ces mécanismes. De plus, le but de nos travaux est de satisfaire le maximum de clients, même dans les mauvaises conditions radio.

Dans les approches descendantes, les solutions Cross-Layer proposées se focalisent sur la couche 3 en optimisant les techniques de transport et de contrôle de congestion afin d’éviter les pertes de paquets de type temps réel ou de décider quel paquets doivent être
supprimés, retransmis, etc. selon les besoins de l’application. Ces solutions supposent que les couches basses sont capables de s’adapter aux besoins des applications, alors que dans le cas de mauvaises conditions radio ou d’un trafic très chargé, la congestion est très fortement probable et les pertes sont énormes. Par conséquent, les adaptations sont limitées et les résultats sont insuffisants pour satisfaire les applications.

Dans les approches mixtes, certaines solutions proposent des améliorations générales du réseau en faisant profiter toutes les couches du modèle OSI en tenant compte de tous les paramètres. Ces modèles sont assez complexes, il faut définir tous les paramètres de chaque couche qui entrent en jeu, définir ceux qui sont dépendants les uns des autres, ceux qui sont modifiables et ceux qui ne sont pas contrôlables.

2.7 Conclusion

Dans ce chapitre, nous avons présenté l’état de l’art de la technologie WIMAX, nous avons défini les différents aspects des couches PHY et MAC du standard 802.16 qui se relagent à nos travaux. Nous avons discuté de la gestion de la QoS dans la couche MAC 802.16 et les contraintes et limitations des ressources de la couche PHY 802.16. En outre, nous avons présenté la nature et les contraintes des applications de streaming vidéo.

Ceci nous a amené à présenter le concept Cross-Layer qui permet de palier à ces limitations en autorisant un échange d’information entre les couches. Ce nouveau paradigme suscite un grand intérêt pour améliorer les performances des réseaux WIMAX pour lesquels les conditions du canal radio varient considérablement comparées à celles d’un réseau de type filaire. En effet, le partage de l’état du canal avec les couches supérieures permettra à ces dernières de répondre efficacement à ces changements.

Dans le chapitre suivant, nous allons voir comment le concept Cross-Layer peut être exploité pour garantir la QoS pour des services multimédia transmis sur les réseaux 802.16.
Chapitre 3
Optimisation Cross-Layer pour la transmission vidéo unicast

3.1 Introduction

Actuellement, nous assistons à une recrudescence des efforts de développement des technologies sans fil et mobile pour la transmission des services multimédia de type voix et vidéo. Le but est de fournir une plus grande bande passante et une couverture optimale avec la meilleure qualité de service et d’expérience (QoS/QoE) possible pour l’utilisateur final.

La norme IEEE 802.16 [1] [2] constitue une solution pour l’Internet haut débit mobile qui offre des débits élevés tout en assurant une qualité de service satisfaisante. Cette norme est particulièrement adaptée au contexte des applications multimédia temps réel telles que la transmission en continu des flux vidéo (« streaming »), la téléphonie sur IP ou encore la télévision sur IP. Cependant, différentes contraintes doivent être levées pour assurer un bon fonctionnement des services envisagés, notamment en termes de garantie de la bande passante requise, de contrôle de délai, de gigue et de taux de pertes tolérés. Pour ce faire, plusieurs mécanismes ont été proposés à différents niveaux des couches protocolaires et notamment au niveau de la couche MAC. En effet, la couche MAC joue un rôle important pour garantir les paramètres de qualité de service. Néanmoins, cette couche seule ne répond pas à la problématique complexe de la QoS.
Toutefois, la satisfaction de ces paramètres nécessite l’optimisation et le contrôle d’importantes ressources, qui sont parfois indisponibles selon l’état du réseau, notamment au niveau de la couche physique (PHY) et de la couche MAC. En conséquence, si les ressources disponibles dans le réseau ne sont pas suffisantes pour assurer un fonctionnement correct de l’application de streaming vidéo, cette dernière est tout simplement interrompue. Actuellement, aucune solution efficace n’est proposée dans les différents standards 802.16. Pour pallier à la problématique de la pénurie de ressources et anticiper tout disfonctionnement, les applications de streaming vidéo devraient, idéalement, adapter leurs débits de données en fonction de la variation observée des conditions réseau et principalement au niveau des couches PHY et MAC. Ce processus est utilisé dans de nombreux mécanismes d’optimisation et est appelé « Cross-Layering ». Le concept Cross-Layer est un sujet de recherche d’actualité qui vise à accroître la qualité de service en réalisant des actions coordonnées entre les différentes couches du modèle protocolaire réseau.

Notre objectif principal consiste à trouver des solutions efficaces en se basant sur le modèle Cross-Layer qui permet de mettre en place des interactions coordonnées entre les couches hautes représentant l’application de streaming vidéo et les couches basses représentant la couche MAC/PHY de la norme IEEE 802.16. L’échange d’informations entre ces couches conduira à une optimisation du fonctionnement de l’application en fonction des changements observés sur le canal radio. Ainsi, cette solution d’optimisation permettrait de limiter les probabilités de disfonctionnement ou d’interruption de la transmission vidéo et de garantir, par la même, les contraintes de QoS.

Nous proposons dans ce chapitre une solution basée sur les mécanismes Cross-Layer nommée CLO (pour « Cross-Layer Optimizer »). Ce chapitre se focalise sur les transmissions vidéo sur le lien montant. Ainsi, l’optimisation apportée par l’entité CLO sera appliquée aux différentes stations SS qui transmettent leur flux sur le réseau WIMAX. L’entité CLO sera installée entre la couche applicative et la couche MAC/PHY de la SS. L’idée principale du CLO est d’exploiter les messages MAC de signalisation et de management échangés au sein d’une cellule WIMAX, de les interpréter dans le but d’optimiser et d’adapter le flux vidéo pour garantir une continuité de service.

Ce chapitre est organisé comme suit ; dans un premier temps, nous présentons quelques solutions Cross-Layer proposées dans la littérature qui ont des éléments en commun avec notre problématique. Dans la deuxième partie, nous exposons le contexte
Solutions Cross-Layer pour le streaming vidéo dans les réseaux WIMAX.

La plupart des travaux existants sur les optimisations Cross-Layer dans les réseaux WIMAX se concentrent sur les interactions de la couche PHY avec la couche MAC et ne considèrent pas les performances de la couche application (APP).

Les auteurs de [82] et [83] proposent un mécanisme Cross-Layer pour intégrer la QoS de la couche 3 avec la QoS de la couche 2. Leurs propositions sont décrites en quatre étapes. Dans la première étape, ils proposent une correspondance (« mapping ») entre la QoS au niveau IP et la QoS au niveau MAC 802.16. Ils décrivent des règles de correspondance entre les classes de service définies par « IntServ » et « DiffServ » et les classes de services définies dans la norme 802.16, à savoir, l'UGS, rtPS, nrtPS et BE comme indiqué dans le Tableau 3-1

<table>
<thead>
<tr>
<th>IntServ</th>
<th>802.16 QoS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guarantee Service (GC)</td>
<td>Unsolicited Grant Service (UGS)</td>
</tr>
<tr>
<td>Controlled Load (CL)</td>
<td>Real-time Polling Service (rtPS)</td>
</tr>
<tr>
<td>DiffServ</td>
<td></td>
</tr>
<tr>
<td>Expedited Forwarding (EF)</td>
<td>Non-Real-time Polling Service (nrtPS)</td>
</tr>
<tr>
<td>Assured Forwarding (AF)</td>
<td></td>
</tr>
</tbody>
</table>

Tableau 3-1. Correspondance entre QoS IP et QoS 802.16 [83]

La seconde partie concerne le contrôle d'admission, les auteurs proposent un nouvel algorithme qui met en œuvre des restrictions d’allocation de bande passante. Cette restriction vise à prendre en compte l’aspect de variation des caractéristiques de chaque flux. Ensuite, un schéma de fragmentation est proposé comme troisième étape ; ils introduisent un mécanisme de contrôle de fragments qui s’assure que les fragments d’un même paquet IP sont mis dans la même file d’attente MAC. Ceci permettra, par la suite, une meilleure reconstruction des paquets. Par ailleurs, en cas de perte ou de congestion, tous les fragments d’un même paquet seront éliminés, ce qui empêche toute transmission inutile de certains fragments. La quatrième et la dernière étape concerne la gestion des buffers des files d’attentes rtPS et nrtPS. Cela consiste à une réorganisation conditionnée et
temporelle, permettant ainsi aux classes de service CL et EF d'utiliser le buffer nrtPS lorsque le buffer rtPS arrive à saturation. Ceci est basé sur le fait qu'il est probable que le buffer rtPS soit saturé avant celui de la classe nrtPS. L'évaluation de la solution, faite par simulation, confirme que les mécanismes proposés offrent une meilleure performance, notamment en termes de débit de données.

Dans [84], les auteurs proposent une optimisation Cross-Layer entre la couche MAC et la couche PHY. Leur solution collecte des paramètres tels que des indications sur l'état du canal radio, les demandes de bande passante et la longueur des files d'attente des deux couches. Pour ce faire, l'entité Cross-Layer doit avoir les informations sur les conditions du canal radio depuis la couche PHY et les autres paramètres depuis la couche MAC. Par la suite, les paramètres sont optimisés et retournés aux deux couches respectives (Figure 3-1). Par exemple, l'entité Cross-Layer peut informer la couche PHY qu'elle devrait changer le schéma de modulation et de codage en fonction des informations SNR reçues. De même, la couche MAC reçoit des paramètres optimisés tels que la taille idéale de paquets, l'allocation idéale des slots. L'objectif de la solution est de permettre un meilleur ordonnancement des ressources pour satisfaire les besoins en QoS des flux de données. Les auteurs ont démontré, à travers les simulations, l'intérêt du mécanisme Cross-Layer, en particulier en cas de dégradation des conditions radio.

![Figure 3-1 : Architecture d'optimisation Cross-Layer [84]](image)

Jusqu'ici, ces deux approches proposent des solutions génériques pour tous les flux de données. De plus, les caractéristiques de la couche applicative ne sont pas considérées. Par conséquent, dans le cas d'une transmission vidéo en temps réel par exemple, l'application n'a aucune connaissance des conditions du réseau et ainsi aucune adaptation ou optimisation n'est prise en compte.

Dans [85] et [86], la couche APP est incluse dans le mécanisme Cross-Layer en plus des couches MAC et PHY. Dans le cadre de ces études, l'optimisation est effectuée au niveau de la BS qui achemine le trafic vidéo à la SS.

Les auteurs de [85] utilisent les informations fournies par les couches PHY, MAC et APP pour améliorer les performances du système. L'idée principale est d'adapter et d'ajuster la modulation de la couche PHY et le débit de données de l'application vidéo.
streaming en fonction des informations sur le trafic, de l'état du canal et les paramètres de QoS des connexions actives. De nouveaux messages de gestion sont introduits pour informer les SS du nouveau débit de données vidéo. Par conséquent, la SS doit être capable d'accepter ces requêtes de changement de débit et de communiquer ces décisions à la couche applicative. Par simulation, les auteurs notent une amélioration de la capacité globale du système et la réduction des pertes. Néanmoins, la définition de nouveaux messages de signalisation, pour que la BS et les SSs échangent les informations d'adaptation, peut conduire à une charge ajoutée très importante. Cette charge est proportionnelle à la fréquence de changement de l'état du canal et la variation des différents paramètres de QoS des connexions actives.

Dans [86], les auteurs mènent une étude d'évaluation des performances d'une approche Cross-Layer pour la transmission vidéo H.264 multiutilisateurs dans les réseaux sans fil. Trois étapes sont définies: l'abstraction des paramètres de la couche APP et Liaison/Radio, la sélection des paramètres optimisés et leur distribution aux couches correspondantes. La couche APP contribue au design Cross-Layer puisqu'elle a connaissance des pertes des paquets vidéo et des répercussions sur la qualité vidéo perçue par l'utilisateur. La couche MAC et PHY contribuent à leur tour puisqu'ils fournissent les informations de variation des états d'allocation et du canal radio. L'algorithme Cross-Layer est appliqué pour chaque trame pour tous les utilisateurs simultanément afin de fournir une optimisation de la QoS de bout en bout.

Un autre mécanisme Cross-Layer est proposé dans [87]; les auteurs présentent une solution de gestion des buffers afin d'améliorer le fonctionnement d'une application de type streaming vidéo. En effet, l'idée de base de cette approche réside dans le fait que les MAC PDUs d'un flux vidéo peuvent être volontairement supprimés au niveau de la BS si cette dernière juge que le délai de transmission de la trame correspondante est supérieur au délai maximum supporté par l'application vidéo. Le mécanisme AD (« Active Dropping ») proposé permet, dans ce cas, une optimisation des ressources disponibles avec la réallocation des ressources libérées aux trames suivantes du flux vidéo ou aux trames d'un autre flux de données.

Nous proposons une solution Cross-Layer qui prend en compte la couche Application et la couche MAC 802.16. L'exclusion de la couche PHY de notre approche est justifiée, d’une part, par un souci de compatibilité avec le standard (rappelons que toute modification de la couche PHY casse la comptabilité car cela implique une modification du matériel), et d’autre part, par notre conviction de l’efficacité des mécanismes existants (Modulation OFDMA adaptative, …) qui sont exploitables directement à partir de la couche MAC.

Notre solution vise à améliorer la transmission vidéo sur le lien montant pour les stations contributrices. En conséquence, les traitements sont proposés au niveau de la SS et non pas au niveau de la BS. En outre, nous utilisons les messages existants de la couche
MAC pour la signalisation et le management, aucun nouveau message de gestion n’a été ajouté à la différence de [85] et [86]. Dans une optique de réduction de la surcharge de calcul, notre approche d’optimisation est effectuée uniquement au début d’une session de streaming vidéo ou pendant la durée de vie d’une session à des instants ponctuels, si l’évolution des conditions de la couche MAC où de la couche PHY est notablement détectée.

Dans le reste de ce chapitre, nous développons le contexte général de notre problématique, nous exposons, par la suite, notre approche ainsi que l’évaluation de performance afin de confirmer l’intérêt de notre solution.

3.3 Topologies de références

Dans cette partie, nous étudions les différentes architectures et topologies auxquelles nous nous sommes intéressés et qui conviendraient le plus à notre problématique.

3.3.1 Architecture distribuée

Dans ce paragraphe nous décrivons les architectures de référence que nous jugeons pertinentes pour notre proposition. Tout d’abord, nous considérons une architecture Point à Point (ou Peer-to-Peer) comme indiqué dans la Figure 3-2 où chaque client demande le flux vidéo à partir d’une source. Selon la demande, la source vidéo initie une session de streaming vidéo correspondante. Cela est en relation directe avec la bande passante disponible pour chaque utilisateur. Cette architecture est plus appropriée pour les services de streaming P2P. En effet, un client P2P pourrait récupérer le contenu vidéo parallèlement à partir de plusieurs sessions de streaming vidéo depuis plusieurs pairs. L’inconvénient de cette architecture est la correspondance 1-1 entre le nombre de client et les sessions vidéo à initier par le serveur vidéo. Cette architecture est appelée diffusion simultanée ou « Simulcast », et conduit à une surcharge importante sur les liens de transmission.

3.3.2 Architecture Centralisée

La seconde architecture décrite dans la Figure 3-3 est une architecture centralisée. Contrairement à la première architecture, les clients n’ont pas un accès direct au serveur de streaming vidéo, ils doivent plutôt envoyer leur demande à un routeur ou une passerelle centralisée. Ce dernier devrait, en premier lieu, faire une sélection des demandes puis envoi au serveur vidéo. Ensuite, le serveur envoie le flux de streaming vidéo approprié à tous les utilisateurs. Par rapport à l’architecture distribuée, l’architecture centralisée réduit le nombre de connexions à 1-N dans le cas le plus favorable (tous les utilisateurs ont le même profil), et dans le cas le plus défavorable (les clients ont des profils hétérogènes), nous nous
retrouvons dans le cas 1-1. Le serveur vidéo doit envoyer de multiples sessions vidéo en même temps. Pour éviter ce problème, la passerelle devrait choisir un nombre fini de profils utilisateurs afin de limiter le nombre de sessions de streaming vidéo.

Indépendamment de l’architecture utilisée, que ce soit distribuée ou centralisé, notre but est de trouver une solution d’adaptation et d’optimisation de l’application streaming.
vidéo qui prenne en compte le changement des conditions du réseaux et la diversité des clients vidéo.

3.4 Contexte générale

Comme mentionné ci-dessus, nous avons développé notre solution CLO pour un réseau WIMAX. Dans le paragraphe suivant, nous rappelons brièvement le fonctionnement de la gestion de la QoS dans un réseau WIMAX, ainsi que la gestion des flux de service dans la couche MAC 802.16 afin de mieux comprendre l’approche proposée.

3.4.1 Gestion de la QoS et des flux de services dans les réseaux WIMAX

La gestion de la QoS dans la norme IEEE 802.16 [1] est articulée autour de la gestion d’un flux de service (« Service Flow » ou SF). On définit un SF comme étant un flux unidirectionnel de paquets fournissant une certaine garantie de QoS sous la forme d'un ensemble de paramètres de QoS tels que la latence, la gigue et le débit. Un SF peut être créé, modifié ou supprimé à l'aide des messages de gestion au niveau de la couche MAC qui sont décrits dans le paragraphe suivant.

La création d'un SF pourrait être faite soit depuis une SS ou une BS. Quand il s'agit d'une SS, le message DSA_REQ inclut le nom de la classe de service ou l'ensemble des paramètres de QoS du flux de service demandé. La BS répond par un message DSA_RSP avec l'acceptation ou le rejet de la requête. Le message de rejet peut contenir des informations supplémentaires telles que les paramètres non pris en charge ou les paramètres ayant de mauvaises valeurs. Lorsque la BS est l'initiatrice de la requête, le message DSA_REQ contient le SFID, le CID et l'ensemble des paramètres de QoS actifs et/ou admis. La même réponse que dans le premier cas est renvoyée à la BS.

Après sa création, un SF peut être modifié au moyen du message DSC_REQ. La modification comprend les paramètres de QoS admis ou actifs. Si les nouveaux paramètres de QoS sont acceptés par la BS, les changements prennent effet au niveau du SF, sinon, le SF reste inchangé et continue de fonctionner avec les paramètres déjà existants.

Finalement, la suppression d'un SF pourrait être engagée par la BS ou une SS, via le message DSD_REQ. En outre, un SF peut être supprimée implicitement lorsque des erreurs se produisent.

Les messages de gestion des SF vont servir au CLO pour fixer les paramètres optimisés pour l'application de streaming vidéo et par conséquent, offrir une meilleure qualité du service. Les détails de notre approche sont décrits dans la prochaine section.
3.5 Architecture proposée

Nous nous concentrons sur des scénarios où des SS partagent leurs vidéos en temps réel. Notre solution vise à optimiser la session de streaming vidéo initiée par une SS dans le lien montant. Les cas d'utilisation les plus applicables de notre solution sont la vidéo conférence, la vidéo surveillance et la livraison P2P de vidéo. Toutefois, notre approche reste applicable pour les deux architectures de référence présentées dans la Figure 3-2 et la Figure 3-3.

Nous supposons un trafic de streaming vidéo entre une SS WIMAX et n'importe quel autre type de client. En particulier, un trafic de streaming vidéo entre une SS WIMAX vers une autre SS WIMAX pas forcément situées dans la même cellule comme indiqué dans la Figure 3-4.

3.5.1 Proposition d'une architecture Cross-Layer

Comme signalé précédemment, notre solution consiste en un mécanisme d'adaptation de l'application de streaming vidéo conjointement avec un mécanisme d'optimisation Cross-Layer entre la couche MAC et la couche applicative. L'adaptation est effectuée du côté serveur, c'est à dire, le propriétaire du contenu vidéo qui contribue à la session sur le lien montant. La pile protocolaire proposée ainsi que les messages utilisés sont illustrés dans la Figure 3-5.

Dans cette figure, les modèles de référence pour les couches MAC et PHY, tel que défini dans la norme IEEE 802.16d, et le CLO sont clairement indiqués. Les messages de gestion des SF (DSA, DSC, et DSD) sont interceptés par le module CLO et mis à la disposition de l'application de streaming vidéo du côté serveur. Le serveur, de son côté, met les paramètres de transmission à la disposition du module CLO depuis le début de la session de streaming.

Il est à noter que la sous-couche CPS (« Common Part Sub layer ») offre les fonctionnalités de base d'une couche MAC à savoir, l'accès au réseau, l'allocation de bande passante et l'établissement de la connexion. En particulier, la gestion des SF est sous la responsabilité de la sous-couche CPS. Ainsi, le CLO interagit avec la sous-couche CPS et la couche application de streaming vidéo côté serveur.
3.5.2 Algorithme Cross-Layer

L'algorithme d'optimisation Cross-Layer proposé est défini en trois étapes. Dans un premier temps, nous recueillons des indicateurs depuis la sous-couche CPS. Durant la seconde étape, ces indicateurs sont analysés et une décision est prise au niveau du module CLO. Enfin, les adaptations sont appliquées en affectant les nouveaux paramètres vidéo au serveur de streaming vidéo.

L'algorithme Cross-Layer que nous proposons dans cette approche a fait l'objet d'un brevet publié en 2009 [A].

3.5.2.1 Collecte des indicateurs

Comme mentionné au paragraphe 3.4.1, les SF sont gérés (initiés, modifiés et supprimés) via les messages DSA, DSC et DSD. De nombreux messages sont échangés entre les SS et la BS, et nous nous sommes intéressés, en particulier, aux messages DSA_RSP, DSC_REQ et DSC_RSP. L'idée principale consiste à utiliser des messages de gestion existants et déjà définis par la norme IEEE 802.16 plutôt que d'ajouter de nouveaux messages de signalisation. Ensuite, tous les messages (une copie) de gestion des SF initiés par la SS émettrice ou reçus depuis la BS seront collectés par le module CLO puisque notre démarche est implémentée au sein du serveur de streaming vidéo.

3.5.2.2 Adaptation et modification

Les messages de gestion de SF collectés sont tout d'abord analysés. Ces messages renvoient une réponse positive si la requête est acceptée, ou une réponse négative si la requête n'est pas totalement acceptée ou tout simplement rejetée. Dans ce cas, si la requête
n'est pas acceptée, le message de réponse indique l'indisponibilité des ressources nécessaires pour le flux vidéo correspondant. Par conséquent, l'application de streaming vidéo devrait adapter son débit en vue d'obtenir une réponse positive lors de la prochaine tentative. Pour ce faire, les paramètres de diffusion sont modifiés de façon à ajuster le débit de données vidéo. Cette procédure peut se poursuivre jusqu'à ce que le flux vidéo soit accepté ou que la qualité vidéo minimale prise en charge soit atteinte et qu'il y ait toujours un rejet.

Dès l'acceptation de la requête, les paramètres et le temps de l'acceptation sont stockés. Plus tard, le module CLO va augmenter le débit de données vidéo si le streaming vidéo fonctionne correctement pendant une certaine période, en supposant que davantage de ressources sont maintenant disponibles. Si la demande est rejetée, le flux vidéo continue d'utiliser ses paramètres actuels. Si par contre, elle est acceptée, le même processus est répété jusqu'à atteindre la qualité vidéo maximale.

Le paragraphe qui suit décrit les diagrammes de séquence qui fournissent plus de détails sur les opérations d'optimisation Cross-Layer et les messages échangés entre les entités impliquées dans le processus d'optimisation.

3.5.3 Illustration de l’approche

Quand un flux vidéo est demandé, le CLO identifie les paramètres vidéo appropriés permettant de garantir l'acceptation du SF au niveau de l'entité de contrôle d'admission de la couche MAC. Au cours de la session de streaming vidéo, des changements de conditions de la couche MAC, et par conséquent du débit vidéo, peuvent forcer le SF correspondant à être interrompu ou finalement rejeté. Si le mécanisme de CLO n'est pas utilisé, le flux vidéo est abandonné si les paramètres du SF ne répondent plus à ses contraintes de QoS. Le mécanisme CLO permet l'adaptation du débit de données du flux de streaming vidéo en fonction de la fluctuation des conditions du réseau et permet d'éviter ainsi le rejet des SF. De plus, notre approche peut être appliquée au niveau du contrôle d'admission suite à une requête de flux vidéo, ainsi que durant une session de streaming vidéo déjà existante.

Nous illustrons l’approche CLO à travers quelques exemples. La topologie présentée dans la Figure 3-4 est utilisée, avec la mise en œuvre d’un serveur de streaming vidéo implémentant les fonctionnalités CLO au niveau de la station SS1.

3.5.3.1 SS envoie une requête DSA

Si la couche MAC de la SS1 reçoit un flux vidéo des couches supérieures, un message DSA_REQ est envoyé avec les paramètres de QoS souhaités à la station de base BS1. Ensuite, en fonction de l'acceptation ou du rejet des paramètres de QoS, BS1 envoie le message DSA_RSP avec un code de succès ou un code de rejet. Le diagramme de séquences de la Figure 3-6 montre les différentes actions du CLO, avec l'ajout d’un
nouveau SF (étape 1) qui est rejeté lors de la première tentative puis, accepté lors de la seconde tentative.

![Diagram](image.png)

Figure 3-6 : SS envoie le message : DSA Request

Une fois que la SS reçoit un message de rejet DSA_RSP (étape 2 et 3), elle le transmet au CLO (étape 4). Le message est intercepté par le module CLO qui informe l'application de streaming vidéo d'adapter ses paramètres de QoS en réduisant son débit vidéo (étape 5 et 7). Ensuite, une nouvelle requête d'ajout de vidéo est lancée (étape 8), suivie par la même procédure entre BS1 et SS1. La demande est acceptée (étape 10 et 11) et le streaming vidéo est lancé. Une fois le flux vidéo accepté, la disponibilité des ressources et les conditions du canal radio peuvent varier. Dans ce cas, un message de requête DSC doit être envoyé par la BS ou la SS afin de changer les paramètres de QoS.

3.5.3.2 BS envoie une requête DSC

La Figure 3-7 montre le diagramme de séquence avec la BS1 qui envoie un message de requête DSC. Ce message est envoyé une fois que la BS1 est incapable de répondre aux nouvelles contraintes de QoS des SF (étape 1). Cette situation peut se produire dans deux cas, premierement, lorsque les ressources nécessaires du côté de la BS1 ne sont pas disponibles, deuxièmement, quand les contraintes de QoS ne peuvent pas être satisfaites par le lien entre la BS et la station réceptrice du flux vidéo. La BS1 envoie un message de demande de changement du SF DSC_REQ à SS1 (étape 2), afin que cette dernière adapte les paramètres du SF en conséquence. SS1 reçoit la requête et effectue les changements requis (étape 3). L'entité CLO reçoit le même message (étape 4), calcule l'adaptation nécessaire (étape 6) et affecte les nouveaux paramètres à la couche applicative (étape 8).
3.5.3.3 SS envoie une requête DSC

Un message DSC_REQ est initié par la SS1 si un changement de conditions du canal radio est détecté (étape 1). La SS1 demande à la BS1 de mettre à jour les paramètres de QoS du SF correspondant en faisant varier le débit de données du flux vidéo. Une fois que le message DSC_REQ est reçu par BS1 (étape 2), celle-ci vérifie si les nouveaux paramètres de QoS peuvent être appliqués et envoie un message DSC_RSP (étape 4) à SS1 avec une réponse de rejet ou d'acceptation. Dans le cas où la requête est rejetée, SS1 poursuivra sa transmission vidéo avec les paramètres actuels. Si la demande est acceptée comme mentionné dans l'étape 4 de la Figure 3-8, SS1 met en place les nouveaux paramètres du SF. On peut voir clairement dans ce cas l'avantage de l'approche CLO. Cette dernière en effet évite le rejet d'un nouveau flux de service SF vidéo en adaptant les paramètres du streaming vidéo en conséquence (étape 5, 6 et 8 de la Figure 3-8).
3.6 Evaluation de performances

3.6.1 Environnement de simulation

Nous avons utilisé le simulateur QualNet [88] pour mettre en œuvre notre solution de Cross-Layer sur le réseau WIMAX. Nous considérons la topologie décrite dans la Figure 3-9, et le lien entre BS1 et BS2 est supposé être un lien filaire fiable, étant donné que nous nous sommes concentrés essentiellement sur les performances du module CLO.

![Figure 3-9 : architecture de simulation](image)

Le trafic streaming vidéo de la SS1 vers la SS2 est simulé dans différents scénarios en utilisant un générateur de trafic vidéo basé sur des traces pré-encodées de type MPEG-4 [89]. Ces traces fournissent trois qualités vidéo : vidéo de qualité élevée, moyenne et faible (voir Tableau 3-2 pour plus de détails). Pour ce faire, un nouveau générateur de streaming vidéo scalable est développé sur la base des traces MPEG. Il est capable de faire varier la qualité vidéo en basculant d’une qualité à une autre et par conséquent faire varier le débit de données en temps réel. Les paramètres de la couche PHY de l’IEEE 802.16 sont fixés comme indiqué dans le Tableau 3-3.

<table>
<thead>
<tr>
<th>Video quality</th>
<th>High</th>
<th>Medium</th>
<th>Low</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frame rate</td>
<td>25 frames / sec</td>
<td>25 frames / sec</td>
<td>25 frames / sec</td>
</tr>
<tr>
<td>Mean data rate</td>
<td>766 Kbps</td>
<td>267 Kbps</td>
<td>153 Kbps</td>
</tr>
</tbody>
</table>

Tableau 3-2. Qualité vidéo élevée, moyenne et faible

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagation channel frequency</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>20 MHz</td>
</tr>
<tr>
<td>FFT size</td>
<td>2048</td>
</tr>
<tr>
<td>Antenna gain</td>
<td>12 dB</td>
</tr>
<tr>
<td>Transmission Power</td>
<td>20 dB</td>
</tr>
<tr>
<td>Frame size</td>
<td>20 ms</td>
</tr>
</tbody>
</table>

Tableau 3-3. Paramètres de simulation pour la couche PHY de l’IEEE 802.16
Dans le paragraphe suivant, nous décrivons quatre scénarios de simulation et nous discutons les résultats obtenus.

3.6.2 Résultats de simulations

Pour évaluer les performances de notre solution dans différentes situations, nous définissons quatre scénarios :

- Le Scénario 1 présente les conditions normales. Le CLO n'intervient pas. Ce scénario nous sert de référence pour connaître l'allure du débit instantané de chaque qualité vidéo obtenue dans une situation normale.
- Le Scénario 2 simule le comportement du débit vidéo au contrôle d'admission grâce à CLO, dès que le flux streaming vidéo est initié. Deux cas de figures sont illustrés, le débit vidéo est réduit chaque fois selon la bande passante disponible.
- Le Scénario 3 illustre le comportement de l'application de streaming vidéo en cours de transmission, suite à une diminution brusque de la capacité du réseau.
- Le Scénario 4 est l'effet inverse du scénario 3, il montre l'intervention de CLO pour augmenter la qualité vidéo dans le cas où la capacité du réseau est améliorée.

3.6.2.1 Scénario 1 : conditions normales

Nous évaluons le débit des flux vidéo dans des conditions normales en supposant qu'il y a assez de ressources disponibles dans le réseau. Les résultats des simulations des vidéos avec qualité élevée, moyenne et faible sont présentés dans la Figure 3-10. Ces résultats servent de base pour mieux comprendre les scénarios suivants.

3.6.2.2 Scénario 2 : adaptation au contrôle d'admission

Dans ce scénario, les performances de notre solution CLO sont évaluées en présence d'un mécanisme de contrôle d'admission. En plus du trafic de streaming vidéo entre SS1 et SS2, un trafic en background avec une priorité plus élevée est ajouté. Son rôle est de perturber le trafic vidéo et de voir la réaction du module CLO. Un trafic CBR en temps réel avec un débit élevé est choisi pour charger le réseau afin que la BS1 n'ait plus de ressources suffisantes pour satisfaire le trafic vidéo de qualité élevée ce qui va forcer le serveur de streaming vidéo à réduire son débit de données, comme expliqué dans la Figure 3-6.

Le trafic en background est présent durant tout le temps de la simulation, et le trafic de streaming vidéo commence à t = 10 sec pour une durée d'une minute. Le débit du trafic en background pour chaque scénario est indiqué dans le Tableau 3-4. Le serveur vidéo commence, par défaut, la diffusion d'une vidéo de qualité élevée et laisse le module CLO adapter le débit de la vidéo en fonction des réactions de la BS.
Le comportement de l'application de streaming vidéo peut être observé dans la Figure 3-11 et la Figure 3-12. Dans la première figure, nous remarquons que le débit vidéo passe immédiatement du débit de la vidéo de qualité élevée au débit de la vidéo de qualité moyenne. Seulement, quelques paquets appartenant à la vidéo de qualité élevée sont tout d'abord transmis, ensuite, la vidéo de qualité moyenne (Figure 3-11) est transmise. Dans la deuxième figure, nous observons le même comportement, cette fois, le CLO réduit la qualité vidéo jusqu'à atteindre la qualité la plus faible (Figure 3-12). Le débit du trafic CBR est suffisamment élevé (30,75 Mbit/s) au point que la BS1 n'a plus de ressources.
disponibles pour satisfaire la qualité élevée ou moyenne de la vidéo.

![Graphique 3-11 : Débit vidéo de qualité élevée réduit à qualité moyenne lors de l’admission](image1)

![Graphique 3-12 : Débit vidéo de qualité élevée réduit à qualité faible lors de l’admission](image2)

3.6.2.3 Scénario 3: adaptation durant le streaming vidéo : le débit diminue

Ce scénario illustre le fonctionnement du CLO durant une session de streaming vidéo; nous simulons la même configuration que dans le scénario précédant. Le débit du trafic CBR est choisi au départ, de manière à donner la chance à la vidéo de qualité élevée d’être acceptée dès le début de la session. Puis, à l’instant \(t = 30 \text{sec} \), un autre trafic CBR, avec une plus grande priorité, est initiée. Le débit de ce trafic CBR est choisi de telle sorte que la BS n’aura plus assez de ressources pour le trafic vidéo déjà existant (Voir Tableau 3-4 pour le débit du trafic en background pour chaque scénario).

Nous commençons, dans un premier temps, par simuler ce scénario sans l’intervention de l’entité CLO, les résultats sont présentés dans la Figure 3-13. Sans optimisation Cross-Layer, quand BS1 ne peut pas satisfaire le débit de la vidéo de qualité élevée, un message de rejet est envoyé à SS1, la connexion du SF est abandonnée et le trafic de streaming vidéo est tout simplement interrompu. Ensuite, nous simulons le même scénario, mais en tenant compte de l’optimisation CLO. Cette fois, les résultats sont différents. En effet, grâce à notre optimisation au niveau de l’algorithme de scheduling, la BS connaît parfaitement les
flux de service SF correspondants aux applications de streaming vidéo. Par conséquent, comme le montre la Figure 3-7, le module CLO forcerà l'application de streaming vidéo du côté serveur à s'adapter et à réduire son débit de données. Les résultats de simulation qui illustrent le basculement vers un débit réduit sont illustrés dans la Figure 3-14 (basculement vers une qualité vidéo moyenne) et Figure 3-15 (basculement vers une qualité vidéo moyenne et puis faible).

Figure 3-13 : Débit vidéo de qualité élevée interrompue durant la transmission

Figure 3-14 : Débit vidéo de qualité élevée réduit à moyenne durant la transmission
3.6.2.4 Scénario 4: adaptation durant le streaming vidéo : le débit augmente

Dans ce scénario, nous réutilisons les mêmes paramètres de simulation que dans le scénario 2, avec un trafic de background de 30,75 Mbit/s. Le trafic CBR commence dès le début de la simulation, mais se termine à t = 40 sec au lieu de toute la durée de la simulation.

Comme mentionné ci-dessus, le débit vidéo va diminuer, grâce au module CLO dès l’admission du flux vidéo, jusqu’à ce que le débit atteigne le débit de la qualité vidéo la plus faible. Puis, à t = 40 sec, le trafic en background est interrompu et les ressources qu’il utilisait auparavant deviennent disponibles.

Lorsque la disponibilité est détectée par l’entité CLO, celle-ci informe le serveur de streaming vidéo en vue d’accroître son débit de données vidéo. Un premier message DSC_REQ est envoyé à partir de la SS à la BS pour atteindre une qualité vidéo moyenne, comme indiqué dans la Figure 3-16, puis une deuxième requête DSC_REQ est envoyée pour atteindre une qualité vidéo optimale.
3.7 Conclusion

Dans ce chapitre, nous avons présenté une solution Cross-Layer pour l'optimisation des applications de streaming vidéo au sein des réseaux WIMAX. La problématique étudiée consiste à trouver un compromis entre, d’une part, les besoins d’une application temps réel en ressources réseau telles que la bande passante minimum requise et le délai maximum toléré et d’autre part, la diversité des utilisateurs d’une telle application ainsi que la variation des conditions du réseau au cours du temps.

Dans ce chapitre, nous nous sommes focalisés sur les transmissions vidéo depuis une station SS WIMAX. Notre optimisation a été bénéfique pour les transmissions en lien montant depuis une SS vers la BS, puis vers le réseau Internet. Cette approche est appropriée pour les applications de streaming vidéo tels que la vidéo surveillance, la vidéo conférence ou encore le partage de vidéo en direct dans le cadre d’une communication point à point ou point à multipoints.

Notre solution a apporté les éclaircissements et les réponses nécessaires à la problématique posée. Nous avons proposé une architecture Cross-Layer qui s’adapte efficacement aux changements de conditions réseau en ajustant le débit des flux vidéo en fonction des ressources disponibles. La nouvelle technique d’adaptation du débit vidéo pouvait intervenir dès le début d’une transmission vidéo grâce à une entité de contrôle d’admission enrichie par des algorithmes d’optimisation. Cette adaptation pouvait, aussi, avoir lieu en cours de transmission suite à une évolution ou une dégradation des capacités.
L’évaluation de performance de notre solution a été effectuée par un ensemble de simulations de scénarios qui couvraient les architectures visées. Nous avons, en effet, pu démontrer l’efficacité de l’adaptation et de l’optimisation Cross-Layer menant à un meilleur fonctionnement de l’application de streaming vidéo.

Les résultats de la contribution, présentée dans ce chapitre, ont été publiés dans [B] et [C].

Dans le chapitre suivant nous nous intéressons à la transmission vidéo en lien descendant, depuis un serveur vidéo quelconque vers différents utilisateurs. En particulier nous nous focalisons sur la transmission vidéo vers des clients ayant un accès Internet via un réseau de collecte tel que WIMAX. De plus, nous considérons les transmissions multicast afin d’optimiser l’utilisation des capacités du réseau en présence de clients divers et multiples. Le but de ce chapitre est de trouver une solution d’optimisation qui tienne compte à la fois de la diversité des profils réseau des clients vidéo, et également, des caractéristiques adaptatives des codeurs vidéo hiérarchiques.
Chapitre 4
Transmission Multicast SVC
Dans les Réseaux WIMAX

4.1 Introduction

Quelque soit la technologie de communication utilisée, l'accès et la demande simultané
du même contenu/ressource constitue un usage très répondu. Dans les architectures
classiques, les données sont envoyées aux divers clients demandeurs du même contenu par
simple duplication. Ceci peut générer rapidement un problème de congestion dans le
réseau. Cette approche de communication de groupe est appelée multicast applicatif (ou
ALM pour « Application Level Multicast »). Pour remédier au problème de la redondance
du trafic dans le réseau, la solution du Multicast IP s'avère très utile. Cependant, pour tirer
profit de cette solution, il est nécessaire que le réseau soit capable de véhiculer du trafic
multicast IP, nécessitant ainsi le déploiement du protocole de gestion de groupe (IGMP/
MLD) et de routage multicast (par exemple PIM).

Si nous considérons la transmission de flux vidéo temps réel, l’approche multicast IP
est à priori d’une efficacité inégale vue le besoin important en termes de bande passante des
flux vidéo. D’ailleurs, certains ISP exploitent le multicast IP pour offrir des services IPTV
largement utilisés de nos jours.

Dans ce chapitre, nous nous intéressons particulièrement au streaming vidéo multicast
sur les réseaux WIMAX. Dans ce contexte, plusieurs contraintes, auxquelles nous devons
trouver des solutions, rendent l’approche classique multicast IP peu efficace. Ceci est
d’autant plus vrai à cause de la diversité des profils des stations, en termes de conditions
réseaux et de ressources disponibles. L’approche Multicast IP classique ne prend, en effet,
en considération ni l’état en cours du réseau, ni la disponibilité des ressources radio dans le
cadre d’un réseau d’accès tel que le WIMAX.
L’objectif de cette étude est d’effectuer du streaming vidéo au format SVC vers des clients divers appartenant en particulier à des réseaux WIMAX, et ce sachant que chaque client WIMAX possède ses propres caractéristiques physiques, en termes de bande passante et de ressources disponibles. Nous proposons une solution basée sur le multicast IP qui permet de trouver le meilleur compromis entre la diversité des clients et le codage vidéo hiérarchique SVC. Nous démontrons que cette solution offre la meilleure qualité vidéo même pour les clients ayant de faibles conditions radio.

4.2 Motivation

Comme souligné précédemment, la transmission des flux vidéo en multicast IP s’avère très efficace si tous les clients (SS) sont homogènes et synchrones. Cependant, dans notre cas, les clients qui sont attachés à une BS WIMAX ne peuvent pas être homogènes, à cause des caractéristiques inhérentes au médium radio au sein de la cellule. En effet, les SS les plus proches de la BS possèdent une meilleure bande passante et peuvent recevoir le flux vidéo avec la qualité de service demandée, tandis que les SSs les plus éloignées n’ont pas assez de ressources pour recevoir ce flux. Dans ce cas, et afin de gérer de façon efficace les ressources réseau et d’offrir la meilleure qualité de service, il est possible de mettre en place, au niveau du serveur de streaming vidéo, des mécanismes permettant d’adapter le flux aux ressources utilisateurs. Dans ce cas, l’approche multicast ne peut pas être appliquée à cause de l’hétérogénité des profils utilisateurs présents dans la cellule. Ci-dessous, sont détaillées les limitations du multicast IP pour différents cas possibles de transmission:

- **Cas 1** : Transmission d’un flux vidéo avec la qualité la plus élevée afin de satisfaire les abonnés les plus favorisés, ayant assez de ressources et assez de bande passante pour acheminer le flux vidéo de qualité élevée de bout en bout. Dans ce cas, tous les autres utilisateurs ne répondant pas aux critères du flux vidéo en termes de bande passante, ne peuvent recevoir ce flux vidéo. Si le flux est reçu, il le sera avec une qualité très dégradée (due par exemple à l’atténuation du signal).

- **Cas 2** : Transmission d’un flux vidéo avec la qualité la plus faible afin de satisfaire le maximum d’utilisateurs. Dans ce cas de figure, les utilisateurs ayant une plus grande bande passante sont pénalisés et doivent recevoir une vidéo de moindre qualité.

- **Cas 3** : Transmission d’un flux vidéo d’une qualité moyenne afin de satisfaire une bonne partie des utilisateurs et offrir une qualité plus acceptable pour les utilisateurs les plus favorisés. Cette solution augmente le nombre de personnes satisfaits par la qualité vidéo perçue mais ne résout pas l’intégralité des problèmes. Certains utilisateurs à excellentes ressources ne reçoivent pas la qualité adéquate, d’autres ne reçoivent aucun flux vidéo.
• Cas 4 : Transmission d’un flux vidéo plusieurs fois avec un niveau de qualité différent. Le serveur vidéo pourra, en fonction des profils de ses utilisateurs, diffuser plusieurs flux vidéo avec différentes qualités (qualité minimale, moyenne et maximale). Cette solution pourra satisfaire un plus grand nombre d’utilisateurs. Si les profils des différents utilisateurs vidéo sont très proches, le nombre de flux vidéo à transmettre sera réduit. À la différence, si la diversité des profils est importante, le nombre de flux vidéo ne pourra résoudre le problème. L’inconvénient de cette solution est l’augmentation de la bande passante requise ainsi que les ressources nécessaires pour acheminer toutes les qualités du même flux vidéo. Si plusieurs profils sont présents au sein d’une même cellule WIMAX, la BS doit trouver les ressources nécessaires pour acheminer toutes les qualités. De plus, dans cette solution, il restera toujours des utilisateurs non satisfaits qui recevront une qualité vidéo insuffisante par rapport à la bande passante disponible pour chacun.

Comme on le voit clairement, aucune solution ne permet de remédier au problème de la diversité des conditions réseau des utilisateurs. Dans tous les cas, certains utilisateurs ne seront pas satisfaits (dégradation de la qualité d’expérience QoE), des ressources seront gérées de façon non efficace ou des utilisateurs seront non éligibles au service.

Idéalement, chaque utilisateur devrait recevoir une qualité vidéo proportionnelle ou équivalente à ces capacités et ses ressources disponibles.

Pour trouver une solution qui tienne compte de toutes ces contraintes, nous nous sommes intéressés aux développements récents dans le codage vidéo supportant l’hétérogénéité des profils utilisateurs. Pour ce faire, nous avons opté pour le codage hiérarchique SVC (« Scalable Video Coding »). En effet, le SVC nous parait la solution de codage vidéo la plus adéquate et qui répond aux exigences évoquées précédemment.

Dans le prochain paragraphe, nous décrivons tout d’abord, quelques exemples de solution vidéo multicast qui se basent sur le codage vidéo hiérarchique. Ensuite, nous présentons notre solution et nous détaillons notre architecture ainsi que son évaluation de performance.

4.3 Etat de l’art des solutions de vidéo streaming multicast

Plusieurs travaux se sont intéressés à l’utilisation des techniques de codage hiérarchique pour la transmission vidéo en multicast, nous décrivons ci-dessous deux principales propositions utilisant un codage vidéo hiérarchique.

L’approche SVSoA est définie dans [90]. Les auteurs de ce papier présentent une solution de streaming de vidéo hiérarchique utilisant le multicast IP. Grâce à l’utilisation du protocole ALC (« Asynchronous Layered Coding » [97]), SVSoA garantie la scalabilité vis-
Transmission Multicast SVC Dans les Réseaux WIMAX

à-vis de l’hétérogénéité des utilisateurs ainsi que la fiabilité. Le protocole ALC [RFC 3450] est considéré comme un protocole de transport multicast fiable et il n’est pas conçu à la base pour des transmissions temps réel.

Les auteurs combinent l’utilisation des codeurs vidéo hiérarchiques avec le protocole ALC. En effet, le serveur vidéo commence par découper la vidéo en plusieurs segments de durées égales. Chaque segment est composé de plusieurs blocs de telle façon que chaque bloc représente une couche vidéo de base ou d’amélioration. La décomposition en segments et blocs est illustrée dans la Figure 4-1. La transmission de chaque bloc est effectuée d’une façon indépendante dans une session ALC à part entière. Ainsi, chaque couche vidéo sera transmise dans un groupe multicast différent. La taille de données de chaque bloc représente la taille des données utiles plus la taille des paquets de corrections d’erreur à base de FEC (« Forwarding Error Correction ») utilisé en natif par le protocole ALC pour assurer la fiabilité. A la réception, chaque client commence par acquérir les données de la première session ALC qui correspond à la couche de base de la vidéo. Ensuite, avant que la durée du segment ne se termine, le client commute vers la session ALC qui correspond à la couche vidéo d’amélioration. Ce processus est répété pour toutes les couches d’amélioration. Dans ce papier, les auteurs ont considéré une session pour la couche de base et une autre pour une seule couche d’amélioration.

Figure 4-1 : SVSoA : streaming vidéo multicast avec ALC [90]

L’inconvénient de cette solution réside dans l’augmentation du nombre de sessions ALC actives. En effet, le serveur doit envoyer toutes les couches vidéo et créer ainsi un nombre important de sessions ALC même si l’utilisateur ne recevra que la couche vidéo de base. La deuxième problématique non traitée dans cette approche concerne l’hétérogénéité des récepteurs si le réseau et de type WIMAX. Enfin, il faut s’assurer que la durée du segment vidéo permettra à l’utilisateur de recevoir le maximum de couches d’amélioration en plus de la couche de base. Une seule couche d’amélioration a été considérée dans ce
papier, ce qui ne correspond pas aux codeurs vidéo existants, comme le SVC qui fourni un nombre important de couches. Au même titre, la durée du segment est considérée comme un paramètre clé pour cette solution.

La durée du segment doit prendre en compte l’aspect temps réel de l’application de vidéo streaming. SVSoA fixe la durée d’un segment à 60 secs et, comme la réception des couches est séquentielle, la lecture ne pourra commencer avant l’acquisition totale du segment. Ainsi, une latence plus importante est observée par rapport à une architecture classique où la taille d’un segment correspond à la taille d’une image (1/25 s).

Selon les auteurs, la solution SVSoA est valable pour tous les codeurs vidéo hiérarchiques. D’autres travaux ont proposé des solutions spécifiquement pour le codage MDC (« Multiple Description Coding »).

Les auteurs de [91] et [93] proposent une architecture Cross-Layer pour la transmission vidéo IPTV dans un réseau WIMAX. En effet, la solution proposée cherche à trouver un compromis entre une application vidéo hiérarchique tels que le codage MDC et la diversité des utilisateurs du canal radio dans les réseaux WIMAX. Une approche de type Cross-Layer est alors adoptée. Cette solution prend en considération l’aspect multi résolutions de l’application vidéo et propose un schéma de modulation et un plan d’allocation de ressources optimal afin de maximiser la qualité vidéo même dans les conditions radio les plus défavorables.

Pour bien comprendre cette approche, nous rappelons le fonctionnement du codeur MDC. Une séquence vidéo est formée par plusieurs groupes d’images (GOP : « Group Of Pictures » ou GOF : « Group Of Frames »), chaque GOP est décomposé en plusieurs couches, à savoir la couche de base (layer 1 : Figure 4-2) et les couches d’amélioration (layer 2, …). Chaque couche est divisée en plusieurs blocs de taille égale à K octets. Le paramètre K dépend de la couche en question et de certains autres paramètres. Ensuite, chaque bloc est encodé et étendu jusqu’à atteindre une certaine taille N, en utilisant des codes « Reed-Solomon » [95] ou « Digital Fountain » [96] ou autres afin de former des PU (« Protected Units »). Le choix du paramètre K pour chaque couche vidéo est effectué selon l’importance de la couche. Ainsi, le paramètre K pour la couche 1, qui est la couche de base, est plus petite que celui de la couche 2 et ainsi de suite. Le but de ce choix est de protéger davantage les couches inférieures qui sont plus prioritaires pour décoder les couches supérieures (voir les détails dans la Figure 4-3).

Après la formation des PU de taille N, les paquets MDC sont formés de telle façon que chaque paquet contienne une partie de chaque PU, i.e., le premier paquet MDC contient le premier octet de chaque PU et ainsi jusqu’au Nième paquet qui contient les Nième octets de chaque PU. Ainsi, chaque paquet MDC contient une description de chaque PU et par conséquent de chaque couche vidéo, d’où le nom du codeur MDC. Après réception des
paquets MDC, même en cas de perte, les codes correcteurs d’erreurs, précédemment utilisés, permettent la reconstruction des blocs et ainsi de la séquence vidéo.

Les mêmes auteurs de [91] proposent dans [92] un nouveau schéma de modulation pour les réseaux WIMAX, permettant une meilleure transmission multicast. Au lieu d’utiliser un seul schéma de modulation pour une transmission multicast, chaque signal multicast est généré au niveau du canal en superposant des couches de qualité faible du flux vidéo modulé en BPSK ainsi que certaines couches d’amélioration modulées par un ordre supérieur de modulation tel que 16QAM. Ainsi, un récepteur peut obtenir la qualité vidéo de base en décodant partiellement les paquets multicast des flux modulés en BPSK lorsque le canal radio n’est pas de bonne qualité, ou obtenir la qualité complète de la vidéo de tous
Solutions et architectures proposées

les flux modulés en BPSK et en 16QAM après le décodage des paquets multicast superposés lorsque le canal radio est de bonne qualité.

Une modification au codeur MDC est introduite par les auteurs en appliquant une protection plus importante aux couches supérieures de MDC plutôt qu’aux couches inférieures. Cette modification est essentielle afin d’utiliser la technique de codage superposé. En effet, leur solution consiste à transmettre la description des couches inférieures avec la modulation et le codage les plus robustes et transmettre la description des couches supérieures avec le codage et la modulation les moins robustes. Il est clair que la modulation BPSK est robuste et efficace par rapport au 64QAM, ainsi, il n’est pas intéressant d’appliquer une protection supplémentaire au niveau du codage MDC. Cependant, pour la modulation 64QAM, beaucoup de pertes peuvent avoir lieu, ainsi une protection supplémentaire au niveau du codage MDC apportera une fiabilisation de la transmission.

Nous avons vu dans ce paragraphe quelques solutions pour la transmission vidéo multicast prenant en compte le codage hiérarchique du flux vidéo ainsi que la diversité des utilisateurs et du canal radio d’accès. Ces propositions nous ont permis de définir notre architecture multicast à l’aide du codage SVC. Nous détaillons dans le prochain paragraphe cette architecture et nous présentons les différents éléments techniques qui la composent.

4.4 Solutions et architectures proposées

4.4.1 Création des groupes multicast avec codage SVC

Contrairement à plusieurs codecs qui génèrent un flux vidéo unique avec une seule couche, le SVC génère de multiples flux pour de multiples niveaux hiérarchiques, une couche de base (BL : « Base layer ») et une ou plusieurs couches d’amélioration (EL : « Enhanced layer »). La couche de base est suffisante en soi pour le décodage, mais le décodage des couches d’amélioration nécessite le décodage des couches inférieures (la couche de base dans ce cas). Les niveaux hiérarchiques peuvent être construits sur trois dimensions, voir la Figure 4-4.

- La dimension temporelle fait référence au nombre de trames par seconde (« frame rate »). La couche de base se compose des trames I et P et les couches d’amélioration sont composées de trames B insérées entre les images I et P.
- La dimension spatiale désigne les différentes tailles d'image. Les couches supérieures fournissent une image plus grande.
- La dimension qualité SNR correspond à la qualité d'image. Les couches supérieures permettent une qualité plus fine de l'image avec plus de précision.
Transmission Multicast SVC Dans les Réseaux WIMAX

Avec le codage hiérarchique, chaque utilisateur recevra au moins la couche de base SVC, et puis, selon sa bande passante disponible, il recevra un certain nombre de couches d’amélioration. Avec cette distribution, on garantit que chaque utilisateur aura la meilleure qualité vidéo qu’il pourra avoir selon ses ressources.

La question qui se pose maintenant est comment le serveur vidéo organisera la transmission des différentes couches SVC selon les besoins de chaque utilisateur dans une architecture hétérogène. Pour ce faire, nous avons opté pour une solution qui combine les caractéristiques hiérarchiques du SVC, de la transmission multicast IP et des caractéristiques physiques du support de communication WIMAX. Notre architecture est de type cross-layer car elle prend en considération plusieurs aspects et paramètres se trouvant dans des couches différentes.

Transmettre un flux vidéo SVC en multicast nécessite une connaissance préalable des ressources disponibles dans le réseau afin d’optimiser la diffusion. Or, cette connaissance dépend fortement de la nature du trafic envoyé et du nombre d’utilisateurs présents dans la cellule. Plusieurs combinaisons de transmission peuvent être possibles :

- Associer un groupe multicast pour chaque couche vidéo, une pour la couche de base et une pour chaque couche d’amélioration. Dans ce cas, le nombre de sessions multicast est proportionnel au nombre de couches. Une session multicast est définie par une adresse multicast de classe D. Cette solution s’avère peut efficace.

- Associer un groupe multicast pour plusieurs couches vidéo. On pourra associer un groupe multicast pour la couche de base toute seule puis grouper ensemble un certain nombre de couches d’amélioration dans un même groupe multicast. Cette solution s’avère intéressante et elle présente plusieurs alternatives de mise en place. En effet, le choix des couches vidéo à regrouper ensemble peut se faire selon plusieurs critères :
Solutions et architectures proposées

- Le type d’amélioration temporelle, spatiale ou SNR : un groupe multicast ne peut contenir que des couches d’amélioration de même genre.

- Le degré d’amélioration : le deuxième groupe multicast, après le groupe de base, comprend une première amélioration temporelle, spatiale et SNR à la fois. Ensuite, le troisième groupe contient une deuxième amélioration générale, etc.

- En Zigzag, l’ordre des groupes multicast peut être fait d’une façon cyclique afin de permettre des améliorations progressives selon les trois axes.

Dans la suite de ce chapitre, nous optons pour la génération des groupes multicast selon l’axe temporelle qui correspond au nombre d’images par seconde. Il faut noter que les autres possibilités resteront valides dans notre approche. Chaque groupe multicast contiendra la meilleure qualité spatiale et SNR. Cette supposition est faite principalement pour la simplification de l’étude de simulation. Un exemple de décomposition en plusieurs groupes multicast est décrit dans la Figure 4-5.

![Figure 4-5 : Groupes Multicast SVC](image)

Comme conséquence directe au fonctionnement du codeur vidéo hiérarchique SVC, les groupes multicast ainsi créés sont complémentaires. En effet, selon la bande passante disponible, une SS cliente devrait adhérer au premier groupe multicast, qui représente ou englobe la couche vidéo de base nécessaire pour décoder les couches d’amélioration. Ensuite, en fonction de sa bande passante disponible, la SS adhère au second groupe multicast et ainsi de suite. Pour recevoir la qualité vidéo la plus élevée, une SS cliente devrait recevoir les données de tous les groupes multicast sans exception. Ainsi, l’ordre d’importance des groupes multicast est équivalent à l’importance des couches vidéo qu’ils contiennent.

Nous avons expliqué jusqu’à maintenant, le côté applicatif en utilisant le codage vidéo hiérarchique; le côté transport en utilisant le multicast et la création des groupes multicast à partir de l’application vidéo. Le paragraphe suivant décrit les aspects relatifs à la couche
MAC et Physique utilisés dans notre solution. Dans un premier temps, nous expliquons le fonctionnement normal d’une telle architecture multicast au sein d’un réseau WIMAX. Ensuite, nous décrivons les améliorations proposées, notamment du côté radio, afin d’optimiser l’utilisation des ressources radio et de maximiser la qualité vidéo pour tous les utilisateurs.

4.4.2 Transmission multicast dans les réseaux WIMAX

Afin de transmettre un flux de données, une requête d’ajout de flux de service doit être envoyée à la station de base même si c’est la BS qui doit initier le trafic. C’est alors, la fonction de contrôle d’admission qui intervient.

Il est important de noter que cette procédure est valable à la fois pour les flux unicast et multicast.

- Contrôle d’admission dans les réseaux WIMAX

Nous rappelons que le contrôle d’admission est une fonction qui dépend du constructeur, la norme IEEE 802.16 ne précise pas l’algorithme d’ordonnancement (scheduling), elle définit seulement les différents outils nécessaires tels que les messages de signalisation ainsi que le fonctionnement de base.

En effet, le calcul des ressources disponibles dépend de la taille de la trame au niveau PHY, la bande fréquentielle et la modulation et codage utilisés. Ainsi, après fixation de tous ces paramètres, on arrive à calculer le nombre de slots physiques dont dispose une station WIMAX (BS, ou SS). Rappelons qu’un slot physique est une allocation rectangulaire qui consiste en un symbole OFDM en temps et en fréquence.

Supposons que la BS veuille envoyer un flux de données vers une des SS de sa cellule, elle commence par calculer le nombre de slots physiques nécessaires pour ce flux (après consultation de tous les paramètres PHY correspondant à la fois à la BS et à la SS concernée). Ensuite, la BS vérifie la disponibilité de ce nombre de slots et accepte ou refuse l’accès de ce flux.

Bien évidemment, la SS sera informée de cette décision via un des messages de signalisation et de gestion des flux de service. En particulier, chaque SS reçoit les allocations de ressources dans le champ MAP au début de chaque trame juste après le préambule :

- Le message DL_MAP

Au début de chaque trame, la BS inclut les messages DL_MAP et UL_MAP qui sont envoyés en broadcast à toutes les SS de la cellule. Le DL_MAP contient la description des allocations de ressources pour chaque SS et pour chaque flux de données. Le DL_MAP
Les architectures multicast SVC proposées

Les architectures multicast SVC proposées permet à la SS de localiser le burst de données qui lui est dédié. Le burst étant une partie de la trame identifiée par une plage temporelle et fréquentielle. Chaque burst est décrit dans le DL_MAP sous forme d’un DL_MAP_IE. Ce dernier fournit l’emplacement exact au sein de la trame.

 Selon la norme IEEE 802.16, le champ DL_MAP ne contient aucune indication pour décrire le schéma de modulation et codage utilisé. En effet, suite à une négociation entre la BS et la SS, le schéma de modulation et codage est fixé. Il peut être mis à jour en cas de changement des conditions radio, la BS informant de ces changements via les champs UCD et DCD qui sont envoyés périodiquement par la BS en début de la trame. La valeur de la modulation et codage est utilisée pour tous les flux envoyés à la même SS. Ainsi, une SS ne peut utiliser deux modulations différentes dans la même trame par exemple.

 Une SS, qui peut recevoir des données codées en 64QAM, est tout à fait capable de recevoir des données avec des modulations plus robustes telles que 16QAM ou BPSK, en particulier car les champs UCD et DCD, DL_MAP et UL_MAP sont tous codés en modulation BPSK afin que toutes les SS les reçoivent sans perte. La même chose est observée pour la zone de contention dédiée à la demande de bande passante par contention entre toutes les SS. Par la suite, il est tout à fait possible d’indiquer à la SS de recevoir des données avec des modulations différentes qui ne dépassent pas le maximum négocié avec la BS.

 L’information contenant le schéma de modulation et de codage utilisé pour un burst quelconque sera incluse dans le DLMAP_IE correspondant. Ce détail est nécessaire pour la réalisation et la comparaison des deux approches que nous allons décrire dans le paragraphe ci-dessous.

4.5 Les architectures multicast SVC proposées

Dans ce paragraphe, nous étudions les différentes topologies possibles dans le cadre des réseaux WIMAX. En effet, il existe plusieurs scenarios possibles.

Dans un premier temps, nous considérons la topologie présentée dans la Figure 4-6. Nous disposons d’un serveur vidéo doté d’un codeur vidéo SVC capable de transmettre le flux sous forme de plusieurs sessions multicast comme cela a été présenté au paragraphe précédent. Nous supposons que le flux SVC est composé d’une couche de base et de deux couches d’amélioration. Les groupes multicast relatifs aux trois couches vidéo, sont représentés par les petites flèches – voir Figure 4-6. Nous supposons aussi qu’il existe trois cellules WIMAX raccordées au réseau Internet. Une SS, de chaque cellule, se connecte au serveur et demande le flux vidéo en temps réel. En fonction de leurs bandes passantes respectives de bout en bout, chaque SS sera membre d’un ou plusieurs groupes multicast. La SS1, par exemple, sera capable de recevoir uniquement la session multicast qui...
représente la couche vidéo de base du flux SVC, ceci peut être dû à la non disponibilité des ressources radio au sein de sa cellule. La SS3, par contre, sera capable de recevoir les trois couches vidéo et aura, en conséquence, la qualité vidéo maximale disponible.

Dans ce cas de figure, nous remarquons que les groupes multicast sont transportés depuis le serveur vidéo et via le réseau Internet jusqu’à atteindre les stations de base de chaque cellule. Notons que le troisième groupe représentant la deuxième couche d’amélioration n’a pas été transmis ni à la BS1, ni à la BS2, alors que le premier groupe de base arrive à toutes les BS. Nous constatons ainsi que la décomposition du flux SVC en plusieurs groupes multicast est suffisant en partie pour résoudre le problème, en particulier dans ce cas de topologie. Chaque SS d’une cellule différente recevra uniquement le flux multicast nécessaire qui correspond à ses capacités réseaux. Ceci reste aussi valable si des SS font partie de la même cellule à condition qu’elles aient les mêmes caractéristiques radios. Dans ce cas, aucune ressource supplémentaire n’est requise.

Nous nous intéressons, maintenant, au fonctionnement de notre approche au sein d’une même cellule. La Figure 4-7 représente le même serveur vidéo SVC et une cellule WIMAX dont BS1 est la station de base et SS1, SS2 et SS3 sont des stations clientes avec des caractéristiques radios différentes. Toute les SS sont connectées au serveur vidéo SVC et désirent recevoir la meilleure qualité vidéo possible.

Nous supposons que les trois SS se trouvent à des distances différentes de la BS, de telle sorte que la BS affecte à chaque SS un schéma de modulation et codage différent ; par exemple, SS1 en 64QAM, SS2 en 16QAM et SS3 en QPSK.
4.5.1 Mode de modulation simple

Pour que chaque SS puisse recevoir la meilleure qualité vidéo, elle doit adhérer aux trois groupes multicast et récupérer toutes les couches vidéo. Une fois les flux multicast arrivés à la BS, une demande de création d’un nouveau flux de service pour chaque groupe et pour chaque SS est générée. La BS doit dupliquer chaque flux multicast puisque les SS ont des schémas de modulation différents. Ainsi la couche vidéo de base sera transmise trois fois au sein de la même cellule, une fois en QPSK, une fois en 16QAM et une fois en 64QAM. La même chose est réalisée pour les deux autres couches vidéo. La BS devra allouer les ressources nécessaires pour chacun des neufs flux de services. Bien évidemment, en cas de manque de ressources radios, la BS devra prioriser la transmission de la couche de base puis les couches d’amélioration. De même, les SS les plus favorisées, les plus proches de la BS en général, seront traitées en premier lieu. Le mécanisme d’ordonnancement de la BS devra prendre en compte ces deux critères.

A part sa simplicité, ce mode présente plusieurs inconvénients :

- La gestion des ressources est loin d’être efficace. En effet, les mêmes données sont codées plusieurs fois, cette redondance nuit considérablement au principe même de la transmission multicast, il s’agit ici d’une transmission simultanée de la même vidéo avec des modulations différentes et le cas échéant avec des qualités différentes.
• La BS possède un nombre limité de slots physiques à allouer. Avec ce nombre, la BS ne pourra peut-être pas satisfaire toutes les demandes. Chaque SS doit réduire la qualité de sa vidéo chaque fois qu'il y a une nouvelle SS non compatible ou ayant des caractéristiques radios différentes.

• Les SS avec la meilleure qualité de réception sont celles qui sont les plus proches de la BS. Le schéma de modulation et codage utilisé est moins gourmand en ressources radio, alors que les SS les plus éloignées risquent de renoncer au flux vidéo suite à une carence en ressources.

• Les SS, supportant une modulation moins robuste, sont tout à fait capables de décoder une modulation plus robuste. Ainsi, ces SS peuvent décoder le même flux vidéo autant de fois qu'il y a de schémas de modulation utilisés.

Pour remédier à ces limitations, nous proposons dans un premier temps, un nouveau système d'allocation de ressources permettant de distribuer les flux multicast selon les différentes modulations.

4.5.2 Mode de Modulation Multiple

L'idée consiste à bénéficier du fait qu'une SS, capable de fonctionner avec une modulation moins robuste, peut aussi bien fonctionner avec une modulation plus robuste. En effet, en reprenant la topologie décrite dans la Figure 4-7, le mode multi-modulation sera comme suit :

• La couche de base est modulée en QPSK, le burst de données contenant ce premier flux de service est visible pour toutes les SS sans exception. Ainsi, la qualité vidéo minimale est déjà acquise pour toutes les SS dans le champ de couverture de la BS.

• La première couche d'amélioration est codée en 16QAM, le burst de données correspondant sera visible par SS1 et SS2 uniquement. (i.e., seulement par les stations qui peuvent décoder cette modulation)

• La deuxième couche d'amélioration est codée en 64QAM, le burst de données correspondant sera visible par SS1 uniquement.

Dans cet exemple, nous remarquons que chaque SS reçoit une qualité vidéo différente, les couches vidéo sont codées avec des modulations dans l’ordre décroissant de robustesse. De plus, la redondance est omise et les ressources utilisées sont beaucoup moindres. Les ressources libérées pourront servir à améliorer la qualité vidéo pour toutes les SS. Par exemple, le codage de la couche de base et de la première couche d'amélioration pourra être fait en QPSK et on pourra donner la possibilité à SS3 de recevoir la qualité vidéo améliorée.

Plus précisément, nous modifions la fonction de contrôle d'admission au niveau de la
BS afin d'établir la distribution optimale entre les groupes multicast et les différentes modulations utilisées au sein de la cellule. Il s'agit de maximiser la qualité vidéo reçue par chaque SS en fonction des ressources disponibles dans le canal radio. L'algorithme d'allocation des ressources au différents flux vidéo est décrit comme suit :

- effectuer la liste des SS désirant recevoir le flux vidéo.
- établir respectivement le schéma de modulation des SS dans l'ordre décroissant de robustesse.
- établir la liste des flux de service relatifs aux groupes multicast en fonction de l'importance de la couche vidéo qu'il transporte.
- Calculer le nombre de slots physiques nécessaires à chaque flux de service avec chaque modulation.
- Pour s'assurer qu'un maximum de SS reçoivent les flux vidéo, la BS a tendance à affecter la modulation la plus robuste possible à tous les flux de service dans la limite des ressources disponibles.
- Si les ressources sont épuisées et qu'il y a encore une autre couche vidéo d'amélioration non encore transmise, la BS doit changer la modulation d’une ou plusieurs couches précédentes vers une modulation moins robuste afin de libérer des ressources pour le nouveau flux. Le nouveau flux sera codé avec la modulation la moins robuste déjà utilisée. Notons que ce changement n’a pas d’incidence sur le multicast IP.

Dans le meilleur des cas, toutes les couches vidéo sont codées avec la modulation la plus robuste et ainsi toutes les SS reçoivent la même vidéo avec la meilleure qualité. Le pire des cas est que les ressources disponibles ne permettent pas la transmission des flux vidéo qu’avec la modulation la moins robuste et ainsi, uniquement un petit nombre de SS aura accès à la vidéo.

Le mode multi-modulations profite de la diversité des schémas de modulation des SS, faisant partie de la même cellule, et de la diversité des groupes multicast représentant les couches vidéo SVC. La combinaison parfaite entre ces deux paramètres, en tenant compte des ressources disponibles, permet à la BS de distribuer les flux vidéo aux différentes SS d’une façon équitable et optimale.

Dans le paragraphe suivant nous introduisons une autre technique qui permet une économie de ressources considérable. Contrairement au mode multi-modulations, cette technique permet à chaque SS d’utiliser un seul schéma de modulation pré-négocié entre la SS et la BS.

4.5.3 Mode de superposition de codage

Selon la norme IEEE 802.16, le résultat de l’ordonnancement au niveau de la BS consiste à allouer des ressources pour chaque flux de service et pour chaque SS.
Transmission Multicast SVC Dans les Réseaux WIMAX

L'information d'allocation est transmise via le message DL_MAP à toutes les SS. Chaque SS dispose de l'emplacement de son burst de données dans la trame. Le burst de données qui lui est alloué est codé avec la modulation la plus adéquate selon ses conditions radios. Le reste des burst ne lui est pas destiné et peut être codé avec une modulation différente de la sienne.

Considérons la topologie définie dans la Figure 4-7, avec le serveur SVC multicast et les SS avec différentes modulations. Dans le mode classique, plusieurs burst de données seront créés et chacun avec une modulation différente selon la SS de destination. Chaque SS reçoit ses données dans le burst qui lui est destiné, et reste en mode inactif au cours des autres burst transportant les autres flux vidéo /données pour les autres SS.

Si plusieurs SS avec des modulations différentes pouvaient utiliser le même burst de données, un gain considérable de ressources radio serait réalisé. En effet, si la BS arrive à coder les symboles OFDM avec deux ou plusieurs modulations en même temps, chaque SS décode ces symboles OFDM avec sa propre modulation et récupèrerait ses données. Cette technique s'appelle la superposition de codage ou « Superposition Coding », elle a été introduite dans plusieurs travaux [93] [94] afin d’améliorer la capacité utilisateur dans les réseaux sans fil.

Un exemple est illustré dans la Figure 4-8. Les nœuds sont indexés dans un ordre croissant en fonction de leur distance à la BS.

![Figure 4-8 : Superposition de codage dans les réseaux cellulaires [94]](image)

Comme le montre cette figure, lorsque la BS transmet un signal à M3 avec un certain niveau SNR, le SNR ressenti à la fois par M1 et M2 est beaucoup plus grand que leur niveau de SNR attendu ou suffisant. De même, lorsque le BS transmet un signal à M2, M1 reçoit de la puissance supplémentaire au-dessus de son niveau SNR. Cela implique que M1 a un SNR suffisant pour décoder les messages destinés à la fois à M2 et M3, et M2 a un SNR suffisant pour décoder les messages destinés à M3. Ainsi, l’information destinée pour M1 peut être incluse dans la transmission à M2 ou à M3 par l’utilisation de la superposition
de codage. De même, l’information destinée à M2 peut être incluse dans la transmission à M3.

L’utilisation de la superposition de codage dans le cadre de la transmission multicast SVC est comme suit :

- effectuer la liste des SS désirant recevoir le flux vidéo SVC.
- établir respectivement les différentes modulations des SS dans l’ordre décroissant de robustesse.
- établir la liste des flux de service relatifs aux groupes multicast en fonction de l’importance de la couche vidéo qu’il transporte.
- Calculer le nombre de slots physiques nécessaires pour chaque flux de service avec chaque modulation.
- En fonction du nombre de slots physiques disponibles, calculer pour chaque modulation, le nombre maximum de flux de service en commençant par le plus important.
- Utilisation de la superposition de codage en superposant les données des différentes modulations.

Cet algorithme est inclus dans la fonction de contrôle d’admission au niveau de la BS, de façon similaire à la solution précédente. Pour limiter le nombre de modulations à superposer, la BS doit choisir deux ou trois modulations les plus convenables pour satisfaire le maximum des SS de sa cellule.

Remarquons que, contrairement au mode multi-modulations, la redondance est toujours présente dans la technique de superposition. En effet, la couche de base, par exemple, est codée autant de fois qu’il y a de modulations à superposer. Ceci est du au fait qu’une SS ne peut décoder plusieurs modulations en même temps. Malgré cette redondance, le montant de ressources utilisé reste inférieur à toute autre proposition.

Dans le prochain paragraphe, nous évaluons, par simulation, les performances des deux solutions proposées, nous comparons les résultats avec le mode classique et nous montrons le gain résultant chaque fois.

4.6 Environnement et résultats de l’évaluation de performance

Nous définissons dans ce paragraphe, trois cas de figures. Tout d’abord, nous évaluons, par simulation, le cas classique de la transmission multicast SVC au sein des réseaux WIMAX sans aucune modification. Ensuite, une première approche est mise en œuvre, il s’agit de mapper les groupes multicast sur les différents schémas de modulations. Enfin, dans la troisième approche, nous évaluons la transmission multicast SVC dans le cadre d’un codage superposé.
4.6.1 Environnement

Nous avons utilisé le simulateur QualNet [88] pour réaliser les simulations des différents mécanismes proposés. La réalisation est divisée en deux parties :

- Le serveur SVC multicast : Nous avons adapté un générateur de trafic déjà défini sur QualNet afin de générer plusieurs flux correspondant chacun à une couche vidéo SVC à partir d’un fichier de traces. Ces traces représentent les tailles des images ainsi que le temps de transmission de chaque image. A l’aide d’un programme utilisant l’outil JSVM, nous obtenons des fichiers de traces à partir d’une vidéo réelle codée en SVC. Ces traces contiennent, en particulier, la taille des images et leur appartenance à la couche de base ou aux couches d’amélioration. Chaque trafic est transmis en multicast et correspond à une des couches vidéo SVC.

- Contrôle d’admission : nous avons modifié les algorithmes d’allocation de ressources au niveau du contrôle d’admission à la BS. De nouvelles fonctionnalités sont ajoutées pour supporter les trafics vidéo SVC multicast. Deux versions ont été implémentées : la première pour le mode multi-modulations qui permet d’obtenir la meilleure distribution entre les modulations et les groupes multicast ; et la seconde pour la superposition de codage afin de déterminer le nombre de couches vidéo nécessaires pour chaque modulation. Pour les deux mécanismes, la signalisation entre la BS et les SS est assurée par les champs DL_MAP_IE du MAP envoyés au début de chaque trame.

Les paramètres de la couche physique IEEE 802.16, communs à toutes les BS de toutes les simulations, sont fournis dans le Tableau 4-1. Les paramètres de la vidéo SVC utilisés sont fournis dans le Tableau 4-2. La séquence vidéo de 60 secondes est partitionnée en plusieurs couches vidéo, nous notons une couche de base L0 et 4 couches d’amélioration L1, L2, L3 et L4.

<table>
<thead>
<tr>
<th>Paramètre</th>
<th>Valeur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Propagation channel frequency</td>
<td>2.4 GHz</td>
</tr>
<tr>
<td>Channel bandwidth</td>
<td>20 MHz</td>
</tr>
<tr>
<td>FFT size</td>
<td>2048</td>
</tr>
<tr>
<td>Antenna gain</td>
<td>12 dB</td>
</tr>
<tr>
<td>Transmission Power</td>
<td>20 dB</td>
</tr>
<tr>
<td>Frame size</td>
<td>20 ms</td>
</tr>
</tbody>
</table>

Tableau 4-1. Paramètres de simulation pour la couche PHY de l’IEEE 802.16
Environnement et résultats de l’évaluation de performance

<table>
<thead>
<tr>
<th>Description</th>
<th>Séquence de Football américain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Durée</td>
<td>60 secondes</td>
</tr>
<tr>
<td>Débit total moyen</td>
<td>~ 160 Kbps</td>
</tr>
<tr>
<td>Taille d’un GOP</td>
<td>16 images par GOP</td>
</tr>
<tr>
<td>Nombre de couches vidéo</td>
<td>5 (noté L0, …, L4)</td>
</tr>
<tr>
<td>Débit moyen pour L0</td>
<td>~ 37 Kbps</td>
</tr>
<tr>
<td></td>
<td>~ 17 Kbps</td>
</tr>
<tr>
<td></td>
<td>~ 28 Kbps</td>
</tr>
<tr>
<td></td>
<td>~ 38 Kbps</td>
</tr>
<tr>
<td></td>
<td>~ 40 Kbps</td>
</tr>
</tbody>
</table>

Tableau 4-2. Paramètres de la vidéo SVC

4.6.2 Résultats d’évaluation de performances

Nous effectuons une première série de simulation en utilisant une topologie avec trois cellules WIMAX connectées, via le réseau internet, au serveur vidéo SVC (Figure 4-9). Une SS de chaque cellule doit recevoir la qualité vidéo maximale. Dans ce premier scenario, aucune modification au niveau de la BS n’est appliquée. La BS opère dans le mode classique comme cela est défini par défaut dans le simulateur QualNet.

Nous ne considérons pas de différence entre les SS en termes de caractéristiques radio lors de l’ordonnancement. Pour ce faire, les trois SS sont placées à la même distance de leurs BS, comme indiqué dans le Tableau 4-3. Néanmoins, une différence entre les SS existe ; les trafics présents dans chaque cellule ne sont pas les mêmes. Un trafic CBR est ajouté en arrière plan pour surcharger la cellule. Nous modifions le débit de ce trafic dans chaque cellule afin d’observer son influence sur le trafic vidéo multicast SVC.

Il faut noter que le flux CBR ajouté est doté d’une priorité plus importante que le flux SVC, le but est de limiter la bande passante au sein de chaque cellule pour forcer une SS à choisir une qualité vidéo moins importante. Les résultats de cette simulation sont illustrés par la Figure 4-10.
Nous remarquons que les trois SS n’ont pas reçu la même qualité vidéo. SS1 a eu la qualité la plus faible en recevant la couche de base L0 uniquement, toutes les ressources étant épuisées, la BS était incapable d’alloquer plus de bande passante à SS1. La qualité vidéo
la plus élevée a été atteinte chez SS3 en recevant les cinq couches vidéo, n’ayant aucun trafic perturbateur, toutes les ressources de la BS étaient à la disposition de SS3. Finalement, SS2 a eu droit à une qualité moyenne contenant la couche de base L0 et deux couches d’amélioration L1 et L2. Cette simulation nous permet de valider l’intérêt de la décomposition du flux SVC en plusieurs groupes multicast. Chaque SS, en fonction de la bande passante disponible acquiert une qualité vidéo différente. De plus, les groupes multicast, contenant des couches d’amélioration non nécessaires, ne sont pas transmises jusqu’à la BS, leurs flux s’arrêtent au dernier routeur en commun avec d’autres BS.

Le reste des simulations décrit dans cette partie sont réalisées avec la topologie illustrée dans la Figure 4-11. On y retrouve une seule cellule WIMAX et trois SS placées à des distances différentes de la BS. La distance des SS est choisie de telle façon que les modulations affectées aux SS soient différentes l’une de l’autre, comme indiqué dans le Tableau 4-4.

<table>
<thead>
<tr>
<th></th>
<th>SS 1</th>
<th>SS 2</th>
<th>SS 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distance à la BS (m)</td>
<td>100</td>
<td>350</td>
<td>580</td>
</tr>
<tr>
<td>Flux CBR (Mbps)</td>
<td>19.80</td>
<td>19.80</td>
<td>19.80</td>
</tr>
<tr>
<td>Modulation / Coding Rate</td>
<td>64QAM</td>
<td>16QAM</td>
<td>QPSK</td>
</tr>
</tbody>
</table>

Tableau 4-4. Scenario : Différentes SS dans la même cellule

Figure 4-11 : Topologie de simulation avec une seule cellule.

Trois scénarios sont définis. Premièrement, nous effectuons une simulation dans le mode classique sans aucune modification. Ensuite, nous simulons le mode multimodulations et enfin, nous terminons en simulant le mode de superposition de codage. Dans les trois cas de simulation, nous gardons les mêmes paramètres de la couche Physique 802.16, ainsi que les mêmes paramètres de simulation telle que la distance des SS à leurs BS.
De plus, un traffic CBR en « background » de priorité élevée est inclus dans toutes les simulations. Par conséquent, dans chaque cas de simulation, la BS possède les mêmes ressources radio pour statisfaire les SS. La différence entre les résultats de simulation sera une conséquence directe du choix de la technique utilisée.

4.6.2.1 Mode de codage simple

Dans le mode de codage simple, chaque SS reçoit ses données avec la modulation qui lui est attribuée par la BS. Ainsi, pour que toutes les SS soient entièrement satisfaites, il faut que les couches L0, 1, 2, 3 et 4 soient codées avec les trois modulations. Pour cela, la BS doit allouer les ressources nécessaires pour 15 bursts de données. Justement, nous avons choisi le débit du trafic CBR (19.8 M bps) afin d’empêcher que cela n’arrive. En effet, la BS est incapable de satisfaire toutes les SS. Les résultats de cette simulation sont décrits dans la Figure 4-12.

Nous remarquons qu’aucune des SS n’a pu atteindre la qualité vidéo optimale. En effet, SS1 a atteint un débit moyen de l’ordre de 80 Kbps, ce qui correspond au débit moyen des couches L0, L1 et L2 réunies. SS2 et SS3 n’ont eu droit qu’à L0 et L1. En analysant les fichiers de traces de cette simulation, nous avons pu voir que les ressources mises à la disposition de la BS ont été utilisées ainsi :

- La couche L0 codé en QPSK pour SS3, en 16QAM pour SS2 et en 64QAM pour SS1
- La couche L1 codé en QPSK pour SS3, en 16QAM pour SS2 et en 64QAM pour SS1
- La couche L2 codé en 64QAM pour SS1

A travers ces résultats de simulation, nous constatons que la transmission multicast n’a pas été bénéfique pour les trois stations hétérogènes puisque il y a eu redondance des...
couches L0 et L1. Dans le prochain scénario, nous apportons des modifications pour optimiser l’utilisation des ressources disponibles.

4.6.2.2 Mode multi-modulations

Dans ce scénario, nous effectuons la simulation avec les mêmes paramètres que dans le scénario précédant. Les résultats sont illustrés dans la Figure 4-13. Avec l’utilisation optimisée des modulations, les SS arrivent à améliorer la qualité de leurs vidéos. En effet, SS3 atteint un débit vidéo moyen équivalent à trois couches vidéo au lieu d’uniquement deux couches dans le mode classique. SS2 acquiert deux couches d’amélioration supplémentaires et SS1 réussit à avoir la qualité vidéo maximale. La qualité vidéo minimale dans ce scénario correspond à la meilleure qualité vidéo atteinte dans le mode classique, ceci représente un gain considérable.

Les traces des simulations concernant la couche Physique de la BS nous fournissent les détails suivants : la couche L0, L1 et L2 ont été codés en QPSK, L3 en 16QAM et L4 en 64QAM. Ainsi trois bursts avec trois modulations sont insérés dans la trame. Par conséquent, chaque SS est capable de décoder le burst avec la modulation qui lui est attribuée par défaut, ainsi que les bursts avec une modulation plus robuste que la modulation par défaut. C’est le rôle de la BS d’informer les SS de la présence de ces bursts.

En outre, aucune redondance n’est observée, chaque couche vidéo est codée une seule fois et avec une seule modulation. Les ressources devenues disponibles, par rapport au mode classique, ont permis l’ajout d’autres couches vidéo et par conséquent l’amélioration de la qualité vidéo dans chaque SS.
4.6.2.3 Mode de superposition de codage

Dans ce scénario, nous utilisons les mêmes paramètres que dans les autres scénarios. Les résultats de simulation du codage superposé sont fournis par la Figure 4-14. Nous pouvons constater qu’une amélioration importante est réalisée. Le débit moyen du flux vidéo total observé dans chaque cellule est nettement plus élevé que dans les autres scénarios. En effet, SS1 et SS2 atteignent la qualité maximale de la vidéo (toutes les couches) et SS3 arrive à recevoir quatre couches vidéo, une seule couche d’amélioration lui manque.

![Figure 4-14 : Scenario : Superposition de codage](image)

A niveau de la couche physique, voici comment l’allocation des ressources a été réalisée. Pour chaque SS, la BS alloue un burst de données, codé avec la modulation attribuée par défaut à la SS. Trois bursts au total sont alloués, la taille de chaque burst ne doit pas dépasser le nombre de slots physiques disponibles dans la trame en cours quelque soit la modulation utilisée. Dans notre cas de simulation, il est clair que le nombre de slots physiques disponible est inférieur au nombre de slots nécessaire pour un burst codé en QPSK contenant toutes les couches vidéo SVC. C’est pour cette raison que SS3 n’a reçu que quatre couches. Tandis que les bursts codés en 16QAM et en 64QAM ont occupé un nombre moindre de slots qu’il y en a de disponibles.

Nous récapitulons les résultats des trois scénarios dans le Tableau 4-5. Le tableau indique le nombre de couches vidéo reçu par chaque SS dans chaque scénario. Nous remarquons que le mode classique ne réussit à satisfaire aucune SS avec une qualité vidéo maximale alors que la BS a épuisé toutes les ressources dont elle disposait. Le mode multimodulations apporte un gain considérable et l'utilisation optimisée des schémas de modulation de chaque SS apporte ses fruits. Ce mode offre à la SS la meilleure qualité.
observée par rapport au mode classique. Enfin, la superposition de codage représente l’optimisation maximale des ressources radio par rapport à tous les scénarios.

<table>
<thead>
<tr>
<th>SS1</th>
<th>SS2</th>
<th>SS3</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Tableau 4-5. Nombre de couches vidéo reçues

Les deux modes que nous avons présentés dans ce chapitre, sont convenables pour les SS les moins favorisés, i.e., ceux qui sont loin de la BS. En effet, nous remarquons que SS2 et SS3 sont les stations qui ont le plus profité de cette optimisation puisqu’elles passent d’une qualité vidéo très moyenne à une qualité presque maximale.

4.7 Conclusion

Dans ce chapitre, nous avons proposé plusieurs mécanismes permettant la transmission multicast de flux vidéo en streaming au sein des réseaux WIMAX. La problématique étudiée consiste à trouver un meilleur compromis entre, d’une part, la diversité des stations clientes en termes de bande passante, de ressources disponibles et de conditions radio et d’autre part, la structure hiérarchique du codage vidéo SVC adaptée à l’hétérogénéité des récepteurs. Nous avons pu étudier le fonctionnement de ce type d’application dans un réseau WIMAX classique, nous avons identifié ses problèmes et nous avons proposé des solutions pour y remédier.

Deux techniques ont été introduites. En premier lieu, l’utilisation intelligente des différentes modulations des SS a permis un gain en ressources et par conséquent en débit vidéo réalisé. Cette technique met en évidence la compatibilité de certaines stations avec des modulations plus robustes par rapport à la modulation par défaut qui lui est attribuée par la BS. La redondance de certaines couches vidéo est alors omise. Ensuite, le codage en superposant plusieurs modulations permet une utilisation optimale des ressources disponibles dans la cellule. Le principe de cette technique réside dans le fait que le support radio, permettant d’envoyer des données à une station éloignée de la BS, permet en même temps l’intégration des données envoyées à une station proche.

L’optimisation de l’utilisation des ressources reste toujours un sujet d’actualité, les mécanismes décrits dans ce chapitre sont adaptés à la couche physique IEEE 802.16 OFDMA. En fait, la décomposition de la trame en plusieurs symboles OFDM ou en slots physiques permet un accès multiple aux utilisateurs du canal et offre, par conséquent, une manipulation plus facile pour les algorithmes d’ordonnancement et d’allocation de ressources.
Transmission Multicast SVC Dans les Réseaux WIMAX
La technologie WIMAX a émergé comme une alternative compétitive aux solutions d'accès filaires pour la fourniture de l'accès haut débit. Sa conception efficace lui permet de supporter des classes de trafic hétérogènes avec des contraintes de qualité de service différentes. En effet, les nombreux avantages qu'offre cette technologie (haut débit, couverture plus large, support de la QoS, etc.) lui ont permis de s'imposer rapidement comme une alternative technique intéressante aux réseaux cellulaires existants. Cependant, la mise en place de services IP multimédia, qui nécessitent des garanties de QoS, démontre la nécessité de concevoir de nouveaux mécanismes mettant en place des interactions coordonnées entre le réseau et l'application afin de pallier aux limitations observées.

Si la problématique relative à la QoS dans le cœur du réseau IP a été largement traitée durant ces dernières années, la QoS dans les réseaux d'accès tel que le WIMAX reste un domaine de recherche d'actualité. Les contraintes d'applications en termes de paramètres de QoS doivent être garantes à travers l'ensemble des couches de l'architecture réseau. Pour cela, les interactions entre les couches protocolaires sont devenues nécessaires pour permettre d'échanger des métriques de performances indispensables à l'adaptation de leur fonctionnement. Ce nouveau paradigme d'interaction est appelé mécanisme Cross-Layer. La conception de nouveaux mécanismes doit, ainsi, prendre en compte cet aspect d'adaptation. Ces mécanismes doivent être plus flexibles et doivent, en même temps, interagir avec leur environnement caractérisé par une hétérogénéité grandissante.

Dans cette thèse, nous nous sommes intéressés aux performances des réseaux WIMAX dans le cadre du streaming vidéo. Pour ce faire, nous avons exploré les mécanismes Cross-Layer pour l'adaptation et l'optimisation de la transmission des services vidéo en fonction des contraintes des réseaux d'accès 802.16.
CONCLUSION

L’objectif principal des solutions proposées est de permettre aux utilisateurs d’acquérir un service vidéo avec contrôle de qualité de service, et ce en instaurant une collaboration efficace et utile entre la couche MAC/Radio et la couche application.

Dans ce qui suit, nous résumons les principales contributions qui ont été détaillées dans cette thèse. Enfin, nous présenterons un ensemble de perspectives pouvant être explorées dans de futurs travaux.

Dans l’approche CLO (Cross-Layer Optimizer), nous avons proposé une solution basée sur les mécanismes Cross-Layer pour l’adaptation des applications de streaming vidéo sur le lien montant. L’optimisation apportée par CLO est appliquée au niveau des stations SS qui transmettent leur contenu en unicast dans le réseau WIMAX. L’idée de CLO consiste à exploiter les messages de gestion de la couche MAC afin de détecter, au préalable, les changements de conditions MAC/Radio. Dès lors, l’entité CLO informe l’application de streaming vidéo de ces changements qui seront pris en compte par des adaptations. Pour valider le fonctionnement de ce mécanisme, nous avons analysé les performances par simulations. Les résultats obtenus ont montré que l’entité CLO a pu garantir une meilleure QoS et ceci à l’admission du flux vidéo et au cours de la transmission.

La deuxième approche proposée dans cette thèse concerne la transmission IP multicast des flux vidéo au format SVC vers des terminaux WIMAX hétérogènes. Il s’agit d’une solution d’adaptation des flux vidéo multicast en fonction des utilisateurs présents dans la cellule WIMAX. La solution prend en compte l’aspect d’hétérogénéité des utilisateurs en termes de conditions réseaux et de ressources radio disponibles. La nature hiérarchique du codage vidéo SVC a été un avantage prépondérant pour l’architecture multicast proposée. En effet, pour pallier à la diversité radio et à l’hétérogénéité des ressources utilisateurs, plusieurs groupes multicast ont été créés. Ces groupes sont complémentaires et contiennent chacun une ou plusieurs couches vidéo SVC. Selon la bande passante disponible, une SS s’abonne à un certain nombre de groupes (couches vidéo) et réalise ainsi une qualité vidéo maximale possible. Cette architecture multicast est évaluée tout d’abord dans le cadre d’une modulation simple : la BS diffuse les flux multicast conventionnellement au sein de sa cellule.

Dans le cadre de la même approche, nous avons ensuite proposé un nouveau système d’allocation des ressources au sein d’une même cellule. Pour cela, nous avons exploité la diversité des utilisateurs selon le schéma de modulation utilisé. En effet, la BS distribue les flux vidéo multicast selon les différentes modulations des utilisateurs. Par conséquent, un gain considérable de ressources est réalisé en éliminant les redondances. De plus, chaque SS peut fonctionner en mode de modulations multiples. Elle est, en effet, capable de décoder les modulations égales ou plus robustes à sa modulation en cours et obtient ainsi, une

92
qualité vidéo encore meilleure. Au même titre, nous avons exploité la technique de superposition de codage qui permet à une BS de coder simultanément des données avec plusieurs modulations dans le même canal. Chaque SS n’utilise, dans ce cas, que sa propre modulation pour décoder les données. Avec cette technique, les précieuses ressources économisées ont permis par la suite d’augmenter la qualité vidéo perçue par les utilisateurs. L’analyse et la comparaison des résultats de simulation des trois modes (modulation simple, modulations multiples et modulations superposées) ont montré l’efficacité de la solution à garantir la qualité vidéo aux utilisateurs. Le mode de modulations par superposition a permis d’offrir la meilleure QoS.

Extension en DL pour le CLO : L’approche CLO propose une solution d’adaptation Cross-Layer pour les transmissions vidéo sur le lien montant, c’est-à-dire, depuis une SS vers la BS puis vers n’importe quel client. L’entité CLO exploite les échanges de messages de gestion entre BS et SS pour en faire bénéficier la couche application. Pour une projection de notre solution pour l’optimisation d’une transmission en DL, des modifications sont nécessaires. En effet, l’entité CLO pourrait être implantée au niveau de la BS, sauf que les décisions d’adaptation du service de transmission vidéo ne remontent pas à la couche application, mais sont plutôt envoyées au serveur vidéo distant. Par conséquent, un protocole de communication pour transmettre ces décisions entre l’entité CLO et la couche application côté serveur, doit être défini. De plus, il faut considérer le délai supplémentaire en termes de temps de réaction du système causé par cet échange entre BS et serveur vidéo.

Optimisation des communications dans les réseaux multi-sauts : le CLO a été testé dans le cadre d’un ordonnancement centralisé à la BS en mode PMP. Dans le mode multi-sauts à relais, la solution CLO reste applicable si un ordonnancement centralisé à la BS est utilisé. En effet, puisque les informations sur l’état du canal sont fournies par la BS, l’entité CLO peut prendre une décision qui tient compte du lien montant de bout-en-bout en passant par la station relais RS. Par contre, dans le cas d’un ordonnancement distribué, l’information utilisée par le CLO provient du relai d’accès et ne donne pas une idée complète sur le lien montant vers la BS. Dans ce contexte, il est nécessaire que la station relais RS participe à la prise de décision de l’entité CLO puisqu’elle a accès aux informations concernant le lien vers la BS. Ainsi, si le relayage coopératif est utilisé, un algorithme supplémentaire au niveau du CLO permettra une adaptation plus efficace selon le(s) relais utilisé(s). Au final,
l’entité CLO reste une solution de base pour une architecture dédiée aux réseaux multi-sauts.

Cas des réseaux multi-sauts pour le multicast SVC : la décomposition de la transmission du flux SVC en plusieurs flux multicast ne peut être que bénéfique dans le cadre du réseau WIMAX multi-sauts. En effet, en présence de clients avec des conditions différentes, certains flux multicast ne seront pas transférés par les relais et ceci ne peut être que bénéfique pour préserver les ressources au niveau du lien entre un relais et les SS. Concernant le mode de modulation, cela dépend du type de relais et du mode d’ordonnancement utilisés. En effet, dans le cas d’un relais transparent (ordonnancement centralisé par défaut) ou d’un relais non transparent en mode centralisé, tous les trois modes de modulation sont possibles puisque toutes décisions prises par la BS seront réalisées par les relais. Cependant, pour le mode distribué, nous devons ajouter des fonctionnalités au niveau de la RS pour choisir la technique de modulation la plus adéquate et la distribution des flux multicast selon ces modulations.
Références

[33] ISO/IEC JTC1 IS 11172 (MPEG-1), "Coding of moving picture and coding of continuous audio for digital storage media up to 1.5 Mbps", 1992.

Références

Liste des publications

Brevet

[A] A. ABDALLAH, DE. MEDDOUR, T. AHMED, "Optimisation d'une communication de données, notamment pour des applications de transmission en continu de données vidéo dans un réseau WIMAX ", 11/06/2009, INPI FR #0953911

Articles

Annexe

A.1 Détails de la couche MAC 802.16

A.1.1 Format du MAC PDU

Un MAC PDU est l'unité de donnée échangée entre les couches MAC de la BS et des SS. Un MAC PDU (Figure A-1) est constitué d'un entête générique de longueur fixe, d'un payload optionnel et de taille variable et d'un champ CRC (« Cyclic Redundancy Checksum ») optionnel. Le payload comprend zéro ou plusieurs sous-entêtes, zéro ou plusieurs MAC SDU et/ou fragments de MAC SDU.

Figure A-1 : Format d'un MAC PDU

Il y a deux formats d'en-têtes MAC, le premier est générique (Figure A-2) valable pour tous les MAC PDU contenant des données de gestion de la couche MAC ou des données de la couche CS. Le deuxième est le « Bandwith Request » (Figure A-3) utilisé dans le cas de demande de bande passante. Le champ HT permet d'indiquer s'il s'agit d'un entête générique (HT=0) ou bien d'un entête BR (HT=1).

Figure A-2 : Format d'entête générique
Pour plus d'informations, voici la description des champs de l'entête MAC:

- **HT** : Header Type : type de l'entête
- **EC** : Encryptions Control
- **Type** : Type de sous-entêtes présentes dans le payload
- **CI** : CRC Indicator
- **EKS** : Encryptions Key Sequence
- **LEN** : LENgth
- **BR** : Bandwith Request
- **CID** : Connection Identifier
- **HCS** : Header Check Sequence

A.1.2 Les messages de gestion de la couche MAC

Le standard IEEE 802.16d définit un ensemble de messages de management. Ces messages doivent être inclus dans le payload du MAC PDU. Chaque message commence par un champ type du message.

A.1.2.1 DCD (« Down link Channel Descriptor »)

Ce message est transmis en diffusion par la BS d'une manière périodique dans le but de définir les caractéristiques du canal physique en DL, ce message est envoyé chaque fois qu'il y a un changement, l'intervalle entre deux messages DCD ne doit pas dépasser la valeur du « DCD Interval » (10 secs).
Ce message contient :

- l'identifiant du canal du DL ainsi que sa fréquence
- un champ Configuration Change Count, permettant de savoir si les informations sont récentes ou pas.
- la durée d'une trame en termes de Slots Physiques (PS).
- la puissance maximale que peut recevoir la BS au cours de la phase d'initial ranging.
- la durée des gaps TTG et RTG correspondant respectivement au temps nécessaire pour que la BS passe du mode transmission au mode réception et vice-versa.
- la liste des DL burst profile.

A.1.2.2 UCD (« Uplink Channel Descriptor »)

Tout comme le DCD, l'UCD est un message de management envoyé par la BS d'une manière périodique dans le but de définir les caractéristiques du canal physique en Up Link. L'intervalle qui sépare l'envoi de deux UCD successifs ne doit en aucun cas dépasser la valeur de l'« UCD Interval » (10 secs).

Ce message contient :

- l'identifiant du canal en UL ainsi que sa fréquence
- un champ Configuration Change Count équivalent à celui du DCD
- la taille en termes de slots physiques ou PS d'une opportunité de ranging. En fait, l'intervalle durant lequel une SS pourrait envoyer un RNG REQ doit être un multiple de cette valeur.
- La taille d'une opportunité de demande de BP. En fait, l'intervalle durant lequel une SS pourrait envoyer une BR doit être un multiple de cette durée.
- liste des UL burst profile.

A.1.2.3 DL-MAP (« Down Link MAP »)

Le message DL-MAP, généré par la BS, définit les informations d'accès au DL. Ce message doit contenir notamment :

- Un champ de synchronisation de niveau physique (PHY Synchronisation) qui précise le type du réseau (point à point, point à multipoint, etc.).
- Le numéro de la trame.
• Un champ DCD Count correspondant à la valeur du « Configuration Change Count » du DCD appliqué à ce DL-MAP.
• L'identifiant de la BS.
• La liste des IE (« Information Elements ») du DL-MAP.

A.1.2.4 UL-MAP (« UpLink MAP »)

Le message UL-MAP alloue l'accès à l'UL Channel. La BS doit inclure dans l'UL-MAP les informations suivantes :

• L'identifiant de l'UL Channel auquel ce message fait référence.
• Un champ « UCD Count » (équivalent à celui décrit pour le DL-MAP mais correspondant dans ce cas à la valeur du Configuration Change Count de l'UCD).
• L'« Allocation Start Time » : le champ indiquant l'instant effectif où débute l'allocation de l'UL définie au niveau de l'UL-MAP.
• La liste des IE de l'UL-MAP.

Chaque IE doit contenir :

• Le « CID » de la connexion concernée par cet IE. Il peut s'agir aussi bien d'un CID multicast, broadcast ou unicast.
• Le « Start Time » qui indique l'instant de début relativement à l'Allocation Start Time spécifié dans l'UL-MAP.
• La « Duration » qui indique la durée de l'allocation.

Il ya plusieurs types de IE, tel que les Data Grant IE qui donnent l'opportunité aux SS de transmettre des données, les Request IE qui donnent l'opportunité aux SS de transmettre des demandes de BP, etc.

A.1.3 Entrée en réseau et initialisation

Dans ce paragraphe, nous allons voir comment s'effectue l'entrée d'une nouvelle station dans le réseau depuis son apparition jusqu'à ce qu'elle commence à émettre des données.

Cette procédure se décompose en plusieurs phases que voici :

• Balayer le lien descendant et établir la synchronisation avec la BS.
• Obtenir les paramètres de transmission.
• Effectuer le ranging.
• Négocier les possibilités de base.
• Autoriser la SS et effectuer l'échange de clés.
• Effectuer l'enregistrement de la SS auprès de la BS.
• Etablir la connectivité IP.
• Etablir l'heure du jour
• Transférer les paramètres opérationnels.
• Etablir les connexions.

Toutes ces phases ne sont pas toutes obligatoires, nous allons expliciter dans ce qui suit, les phases les plus importantes.

A.1.3.1 Balayage et synchronisation

A l'initialisation ou lors de la perte de signal, une SS doit se procurer un canal en lien descendant. Si elle a gardé les derniers paramètres opérationnels en stock, elle essayera de rétablir le signal, sinon, elle balayera tous les canaux possibles de la bande de fréquence en lien descendant jusqu'à trouver un signal en DL valide.

Une fois que la PHY a réussi la synchronisation, c'est au tour de la MAC d'acquérir les paramètres du DL, ensuite de l'UL.

A.1.3.2 Obtention des paramètres DL

Pour cela, la couche MAC cherche les messages de management DL-MAP. Une SS achève la synchronisation niveau MAC une fois qu'elle a reçu au moins un DL-MAP. Cette phase continue tant que la SS n'a pas réussi à avoir des messages DL-MAP et DCD de son canal. Au bout d'un certain temps, si la SS n'a pas réussi à en avoir, elle revient à la phase précédente de recherche d'un nouveau canal descendant.

Pour plus de détails, voir Figure A-4.

A.1.3.3 Obtentions des paramètres UL

Après la synchronisation, la SS va attendre la réception d'un message UCD de la part de la BS qui contiendra des paramètres de transmission pour des canaux en UL. Ces messages sont transmis périodiquement par la BS. Si la SS échoue au bout d'un TO (« time out »), elle doit retrouver un autre canal DL.
Figure A-4 : Obtention de la synchronisation en lien descendant

A partir des paramètres de description du canal, la SS va voir la possibilité d'utilisation de l'UL. Si le canal n'est pas approprié, la SS doit trouver un autre canal en DL. Dans le cas contraire, la SS sauvegarde les paramètres relatifs au canal. Ensuite, elle attendra le prochain DL-MAP pour en extraire le temps de synchronisation. Puis, elle attendra le plan d'allocation de bande passante. A partir de ce moment, la SS pourra transmettre en UL en tenant compte des opérations de la MAC et du mécanisme d'allocation de BP.

La SS continue à considérer les paramètres UL tant qu'elle continue à recevoir les UL-MAP et UCD. Si elle ne reçoit plus ces messages au bout d'un TO, la SS n'utilisera plus ce canal. Pour plus de détail, voir Figure A-5.
A.1.3.4 Initial ranging et ajustement automatique

Le processus du ranging sert à acquérir l'instant de début ou « timing offset » et à ajuster la puissance de transmission. Ceci permettra à la SS de s'aligner avec le début de la trame envoyé par la BS. La SS est dite co-localisée avec la BS.

Au début, une SS synchronise avec un lien descendant et acquiert les caractéristiques du lien montant à partir du message UCD. Ensuite, la SS va analyser le message UL-MAP pour en extraire des informations utiles pour le processus d'initial ranging. En effet, dans le cas de PHY OFDMA, un sous-canal, dit « ranging Channel », et un ensemble de codes CDMA sont disponibles pour permettre à la SS de réaliser le processus d'initial ranging.

Pour qu'une SS puisse effectuer l'initial ranging, elle passe par les étapes suivantes : la SS choisit au hasard un « ranging code » (le « CDMA code ») parmi une liste initiale (« initial ranging list ») et l'envoie vers la BS. La BS, ne pouvant pas connaître la SS qui a envoyé le code CDMA, répond par un RNG-RSP en diffusion, contenant le ranging slot utilisé par la SS pour que celle-ci puisse reconnaître que le message lui est destiné. De plus, ce message contient des données d'ajustement et une variable état qui indiquent à la SS si elle doit effectuer des ajustements ou pas. Si la BS reçoit un ranging code suite à un RNG-RSP avec état succès, la BS doit allouer de la bande passante à la SS pour qu'elle puisse envoyer des RNG-REQ. Si l'état est continue, la SS répète le processus d'entrée et choisit un autre ranging code parmi une liste de codes (« periodic ranging list »).
Figure A-6 : Obtention des paramètres UL
A.1.3.5 Négociation des capacités de base

Juste après le ranging, une SS informe la BS de ses capacités en lui transmettant un SBC-REQ (« SS Basic Capabilities »), la BS répond par un SBC-RSP en indiquant là où ses capacités coïncident avec celles de la SS.

A.1.3.6 Autorisation et échange de clés

Cette partie ne nous intéresse pas pour le moment. Pour plus de détail, voir le paragraphe 7.2 dans le standard 802.16-2004.

A.1.3.7 Enregistrement

L’enregistrement est le processus qui permettra à une SS l’entrée en réseau, et à une SS administrée (« Managed SS ») d’acquérir le « secondary management CID ». La SS transmet un REG-REQ et attend un REG-RSP de la part de la BS.

A.2 Couche MAC 802.16j

A.2.1 Adressage et connexions

Tous ce qui a été défini en mode PMP reste valable dans le cas de réseaux MR (« Multi hop Relay »). Dans un réseau MR, une connexion peut exister le long de plusieurs sauts, et puisqu’un CID est unique dans une cellule MR, le même CID sera attribué à la connexion même en passant par plusieurs RS. Ceci est valable pour tous les types de connexion, à savoir les connexions basiques, primaires ou secondaires.
Annexe

Un autre type de connexion existe dans le cas de réseaux MR, il s'agit de tunnel. Le tunnel transporte des Mac PDU faisant parties de plusieurs connexions, en direction de la MR-BS et passant par la RS. Un MPDU n'appartient pas forcément à un tunnel.

Il existe deux types de tunnel. Le premier est le tunnel de management transportant des Mac PDU de management, il est identifié par le MT-CID (« Management Tunnel CID »). Le second est le tunnel de transport transportant des Mac PDU de transport, il est identifié par le T-CID (Tunnel CID).

A.2.2 Format du MAC PDU

Concernant le MAC PDU, il garde toujours sa forme standard, on aura l'entête de taille fixe suivi, ou pas, par le payload et finissant optionnellement par le CRC.

Maintenant concernant l'entête, c'est là qu'on trouve des spécificités.

Dans la Figure A-8, ci-dessous, nous observons le format du Relay MAC header. Nous remarquons la présence d'un champ RMI (« Relay Mode Indication »), il permet de savoir si le mode Relay est utilisé ou pas. Ensuite, le champ « Priority » indique la priorité entre les Mac PDU lorsqu'un tunnel est utilisé.

<table>
<thead>
<tr>
<th>HT = 0 (1)</th>
<th>RSV (1)</th>
<th>RMI (1)</th>
<th>Reserved (7)</th>
<th>Priority (3)</th>
<th>LEN(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>LEN LSB (8)</td>
<td>CID (MSB) (8)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>CID (LSB) (8)</td>
<td>HCS (8)</td>
<td></td>
</tr>
</tbody>
</table>

Figure A-8 : Format de l'entête du Relay MAC PDU avec payload

Un autre type de MAC header est utilisé. Il s'agit des PDU sans payload, conçu pour les PDU de signalisation en UL (voir Figure A-9).
Un autre type d’entête existe, il s’agit de l’entête de demande de bande passante pour la station de relais. En effet, la RS envoie cet entête comme « Bandwith Request » à la MR-BS, pour pouvoir envoyer des messages de RNG-RSP. Cet entête est décrit dans la Figure A-10.

Plusieurs types d’entêtes existent aussi selon l'utilisation comme l'entête d'acquittement. Pour plus de détail, voir le standard 802.16j.

A.2.3 Network Entry & Initialisation

La procédure d'entrée en réseau pour une SS ou bien une RS est similaire au mode PMP. Il y aura quelques détails en plus concernant les RS et SS qui ne sont pas dans la portée de la MR-BS qui seront détaillés plus tard. Durant l'entrée en réseau, une RS se comporte de la même façon qu'une SS.
Il y a deux types d'opération pour les systèmes multi hop: le mode transparent et le mode non transparent. La différence réside dans le fait que dans le mode non transparent, une RS pourra transmettre des données de contrôle et particulièrement, transmettre son préambule et son MAP afin que des SS puissent se synchroniser avec elle au lieu de se synchroniser avec la BS, alors que pour le mode transparent, la RS n'effectue rien de cela, elle fait du simple relais.

A.2.3.1 Network entry & initialisation dans le mode transparent

La procédure se fait selon l'ordre des événements suivants:

• Une MS désirant entrer dans le réseau, va scanner le canal DL pour établir la synchronisation avec la MR-BS. Elle obtient les paramètres DL depuis le message UCD.

• Le processus d'« Initial Ranging » commence par l'envoi des codes CDMA via le canal dédié pour la ranging, ce canal est géré par une RS qui est affecté par la MR-BS.

• lorsque la MS envoie le code CDMA, la MR-BS ainsi que quelques RS reçoivent le code. Aussitôt, chacune de ces RS va transmettre un message RNG-REQ vers la MR-BS. Ce message contient le même code ainsi que des informations d'ajustements.

• La MR-BS, ayant reçu le code CDMA, va attendre un ou plusieurs messages REG-REQ des RS ayant le même code du ranging. Ensuite, elle décide du meilleur chemin à emprunter. La RS choisie est désormais appelée l'Access RS. La MR-BS pourra décider de faire de la transmission directe vers la MS.

• Si l'état du ranging n'est pas encore réussi pour le chemin choisi, la MR-BS envoie un message RNG-RSP directement à la MS via l'initial ranging CID. Ce message contient les informations d'ajustements mesurées par l'Access RS correspondante.

 Remarque: Le chemin entre la MR-BS et l'Access RS est déjà au point, reste à adapter le lien entre la MS et l'Access RS.

• Si l'état du ranging est réussi pour le chemin choisi, la RS va recevoir depuis la MS et relayer vers la MR-BS, un message RNG-REQ, contenant l'adresse MAC de MS, transmis dans un burst spécifié par la CDMA_allocation_IE.

• La MR-BS pourra assigner à la MS le basic CID et le CID primaire.

A.2.3.2 Network entry & initialisation dans le mode non transparent dans le cas de scheduling centralisé

Dans le cas du mode non transparent et pour le cas de scheduling centralisé, le processus d'entrée en réseau se fait selon les étapes suivantes:
• La MS scanne le canal DL pour se synchroniser avec la RS non transparente et obtient les paramètres de transmission à partir du message UCD.

• Le processus d'initial ranging commence toujours par l'envoi des codes CDMA.

• Lorsqu'une RS reçoit un code CDMA avec un état continu, la RS doit envoyer localement un RNG-RSP. Pour cela, elle va envoyer à la MR-BS l'entête RS-BR pour lui demander des ressources afin de pouvoir envoyer ce message.

• Une fois que l'état du code CDMA a été envoyé avec succès, la RS peut envoyer le message RNG-REQ vers la MR-BS.

• La MR-BS, de son côté, va lui envoyer un RS UL-MAP contenant des allocations de ressources spécifiées par le CDMA_Allocation-IE, et bien sûr, elle va lui répondre par un RNG-RSP avec un état succès.

• La RS va relayer le message vers la MS après quelques modifications. En effet, il y a un champ « Ranging Indicator » qui informe s'il s'agit d'un ranging classique ou bien d'un ranging avec relais.

• La MS envoie ensuite un RNG REQ via UL selon l'allocation ci-dessus.

• De même, la RS reçoit le message par l'initial ranging CID et le transmet à la MR-BS via le RS basic CID.

• Une fois ce message reçu, contenant l'adresse MAC de MS, la MR-BS peut assigner un basic CID et un CID primaire pour la MS, en la lui communiquant via un message RNG-RSP.

• Après que la RS relaye le message à la MS, cette dernière met à jours ses paramètres de CID et termine ensuite la procédure d'entrée en réseau avec la MR-BS.

 Pour plus de détail, consulter le diagramme page 84

A.2.3.3 **Network entry & initialisation dans le mode non transparent dans le cas de scheduling distribué**

 Toujours dans le cas non transparent, mais cette fois dans un cas de scheduling distribué :

• La procédure est la même concernant le scanning du canal, l'obtention des paramètres de transmission, et le processus d'initial ranging entre la MS et la RS jusqu'à ce que la RS reçoive un code CDMA résultant d'un état de succès.

• A ce moment, la RS envoie un RNG-RSP avec état succès. En même temps, la RS lui alloue de la bande passante avec le CDMA_Allocation-IE pour qu'elle puisse envoyer un RNG-REQ contenant son adresse MAC avec l'initial ranging CID.
• Ce RNG-REQ reçu par la RS, va être analysé pour voir s'il y a quelque chose que la RS peut assurer, le message est ensuite modifié et envoyé vers la MR-BS avec le RS basic CID.

• La MR-BS reçoit le message qui contient l'adresse MAC de MS, et associe le basic CID et le CID primaire au MS et envoie le tout dans le message RNG-RSP.

• La RS met à jour le message, en y insérant les réponses aux traitements qu'elle a pu assurer, et envoie le résultat à la MS avec l'initial ranging CID de MS.

• La MS met à jour ces paramètres de connexion et continue la procédure d'entrée en réseau avec la MR-BS.

A.2.4 Les techniques de demande de bande passante dans le cadre de multi hop relay (IEEE 802.16j)

Dans le cas des réseaux WIMAX multi-sauts, les techniques de demande de bande passante restent les mêmes, il faut juste tenir compte du fait que les SS ne sont plus directement connectées à la BS.

Dans cette partie, nous allons expliquer les différents ajustements et modifications du fonctionnement de ces techniques pour assurer les allocations de ressources tout au long du chemin entre une BS et une SS.

A.2.4.1 Règles générales

Dans détaillons dans cette partie les mécanismes dans le cas d'un ordonnancement centralisé à la BS, ainsi,

• La MR-BS doit connaître les besoins de tous les liens, que ce soit le lien d'accès ou le lien de Relay.

• Si une SS désire transmettre un paquet, une demande de BW doit atteindre la BS qui va allouer les ressources tout au long du lien entre la BS et la SS.

• Une TRS (Transparent RS) ne transmet pas de MAP, mais une NTRS (Non TRS) en transmet. Dans notre cas centralisé, c'est la BS qui doit effectuer le calcul.

A.2.4.2 Bandwidth Request dans la mode centralisé

Les stations de relais devraient transférer toute demande de BW (sous forme d'entête ou de code CDMA) vers les stations plus hautes jusqu'à la MR-BS. Ainsi, une RS ne peut pas combiner toutes ces demandes en une seule puisque la MR-BS doit savoir tous les besoins de tous les liens.

Une station de relais aura besoin de demander de la BW pour ces propres trafics et
pour acheminer les trafics ascendants ou descendants. Sachant qu'une RS ayant déjà une allocation disponible, n'a pas besoin de demander de la BW.

Nous rappelons que la demande de BW se formule en le nombre d'octets nécessaires pour le transfert des entêtes et payload sans compter l'overhead de la couche physique. Une demande peut être transmise en n'importe quelle allocation en UL sauf en période d'initial ranging.

A.2.4.3 CDMA BW Request en mode centralisé

Lorsqu'une NTRS reçoit plusieurs codes CDMA de la part des SS qui lui sont associé (c'est le relais d'accès), elle devrait regrouper ces codes et envoyer un entête MR_Code-REP qui indiquera à la MR-BS le nombre de codes CDMA que la RS a reçu. Par la suite, la MR-BS va envoyer des CDMA_Allocation_IE dont les champs sont mis à zéro. Une fois que la RS a reçu ces IE, elle remplit ces champs et les envoie au SS correspondant.

Lorsqu'une TRS reçoit plusieurs codes CDMA de la part des SS qui lui sont associées, elle envoie autant de codes que de MR_Code-REP, si elle a assez de BW pour les envoyer. Sinon, elle envoie le maximum et indique le nombre de codes non encore transférés. Ainsi, la BS saura lui allouer de la BW pour qu'elle puisse les transférer.

A.2.4.4 GRANTS en mode centralisé

Lorsqu'une MR-BS doit allouer de la BW pour permettre le transfert d'un paquet montant ou descendant, la MR-BS doit faire les allocations nécessaires tout au long du chemin en tenant compte de la qualité des liens et de leurs disponibilités ainsi que des délais de traitement au niveau des nœuds intermédiaires. Par exemple, l'allocation au niveau du deuxième lien est la première opportunité après l'allocation du premier lien, plus le temps de traitement au niveau du relais intermédiaire.

Maintenant, il y a deux méthodes qui existent pour garantir des allocations de BW aux RS, le polling et l'UL_DCH.

- **Le POLLING en mode centralisé**

La MR-BS peut allouer de la BW aux RS pour qu'elles puissent formuler leurs demandes, il s'agit d'un polling périodique.

Dans le cas centralisé, si la MR-BS désire envoyer un pool vers une RS, elle va faire de telle sorte que les stations intermédiaires aient aussi un pool chacune pour que les demandes puissent remonter jusqu'à la MR-BS. Dans le meilleur des cas, la demande atteint la MR-BS en un minimum de temps.
• **Relay UL DCH en mode centralisé**

C'est une deuxième méthode pour garantir des allocations périodiques à une RS. En effet, après l'entrée en réseau et l'initialisation, une RS peut avoir un canal dédié en UL assigné par la MR-BS. Si la RS n'est pas directement liée à la MR-BS, cette dernière doit allouer un canal dédié pour chacune des RS intermédiaires ou ajuster leurs tailles s'ils existent déjà. La taille d'un canal dédié doit être suffisante pour transférer des messages de management. La taille peut aussi changer en fonction du trafic.

En mode centralisé, seule la MR-BS peut assigner ces canaux. L'attribution se fait par un RS_UL_DCH IE au niveau du R-MAP et il est disponible juste à la trame suivante.

Si une SS change les besoins de ses flux de service, il y aura impact sur les besoins en BW au niveau des canaux UL_DCH tout au long du chemin vers la MR-BS. Ainsi, la MR-BS se basera sur les informations de trafic au niveau des messages DSA, DSC, DCD.